summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--libavcodec/Makefile2
-rw-r--r--libavcodec/avcodec.h13
-rw-r--r--libavcodec/dsputil.c2
-rw-r--r--libavcodec/dsputil.h3
-rw-r--r--libavcodec/i386/dsputil_mmx.c2
-rw-r--r--libavcodec/i386/mpegvideo_mmx.c13
-rw-r--r--libavcodec/i386/mpegvideo_mmx_template.c3
-rw-r--r--libavcodec/jfdctint.c290
-rw-r--r--libavcodec/mpegvideo.c34
-rw-r--r--libavcodec/mpegvideo.h3
10 files changed, 340 insertions, 25 deletions
diff --git a/libavcodec/Makefile b/libavcodec/Makefile
index 2c4c69db60..c46bb10beb 100644
--- a/libavcodec/Makefile
+++ b/libavcodec/Makefile
@@ -11,7 +11,7 @@ CFLAGS= $(OPTFLAGS) -Wall -g -DHAVE_AV_CONFIG_H -I.. -D_FILE_OFFSET_BITS=64 -D_L
LDFLAGS= -g
OBJS= common.o utils.o mem.o allcodecs.o \
- mpegvideo.o h263.o jrevdct.o jfdctfst.o \
+ mpegvideo.o h263.o jrevdct.o jfdctfst.o jfdctint.o\
mpegaudio.o ac3enc.o mjpeg.o resample.o dsputil.o \
motion_est.o imgconvert.o imgresample.o msmpeg4.o \
mpeg12.o h263dec.o svq1.o rv10.o mpegaudiodec.o pcm.o simple_idct.o \
diff --git a/libavcodec/avcodec.h b/libavcodec/avcodec.h
index cd40715230..c442df67f7 100644
--- a/libavcodec/avcodec.h
+++ b/libavcodec/avcodec.h
@@ -5,8 +5,8 @@
#define LIBAVCODEC_VERSION_INT 0x000406
#define LIBAVCODEC_VERSION "0.4.6"
-#define LIBAVCODEC_BUILD 4620
-#define LIBAVCODEC_BUILD_STR "4620"
+#define LIBAVCODEC_BUILD 4621
+#define LIBAVCODEC_BUILD_STR "4621"
enum CodecID {
CODEC_ID_NONE,
@@ -96,6 +96,7 @@ extern int motion_estimation_method;
static const int Motion_Est_QTab[] = { ME_ZERO, ME_PHODS, ME_LOG,
ME_X1, ME_EPZS, ME_FULL };
+
#define FF_MAX_B_FRAMES 4
/* encoding support */
@@ -308,6 +309,12 @@ typedef struct AVCodecContext {
int aspected_width;
int aspected_height;
+ int dct_algo;
+#define FF_DCT_AUTO 0
+#define FF_DCT_FASTINT 1
+#define FF_DCT_INT 2
+#define FF_DCT_MMX 3
+
//FIXME this should be reordered after kabis API is finished ...
//TODO kill kabi
/*
@@ -338,7 +345,7 @@ typedef struct AVCodecContext {
uc_res6,uc_res7,uc_res8,uc_res9,uc_res10,uc_res11,uc_res12;
unsigned int
ui_res0,ui_res1,ui_res2,ui_res3,ui_res4,ui_res5,ui_res6,ui_res7,ui_res8,ui_res9,
- ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16,ui_res17;
+ ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16;
} AVCodecContext;
typedef struct AVCodec {
diff --git a/libavcodec/dsputil.c b/libavcodec/dsputil.c
index 5f3d89f54b..8ce6bf7165 100644
--- a/libavcodec/dsputil.c
+++ b/libavcodec/dsputil.c
@@ -25,7 +25,6 @@
void (*ff_idct)(DCTELEM *block);
void (*ff_idct_put)(UINT8 *dest, int line_size, DCTELEM *block);
void (*ff_idct_add)(UINT8 *dest, int line_size, DCTELEM *block);
-void (*av_fdct)(DCTELEM *block);
void (*get_pixels)(DCTELEM *block, const UINT8 *pixels, int line_size);
void (*diff_pixels)(DCTELEM *block, const UINT8 *s1, const UINT8 *s2, int stride);
void (*put_pixels_clamped)(const DCTELEM *block, UINT8 *pixels, int line_size);
@@ -1323,7 +1322,6 @@ void dsputil_init(void)
pix_abs8x8_x2 = pix_abs8x8_x2_c;
pix_abs8x8_y2 = pix_abs8x8_y2_c;
pix_abs8x8_xy2 = pix_abs8x8_xy2_c;
- av_fdct = fdct_ifast;
use_permuted_idct = 1;
diff --git a/libavcodec/dsputil.h b/libavcodec/dsputil.h
index 28655f79c3..616acc20ff 100644
--- a/libavcodec/dsputil.h
+++ b/libavcodec/dsputil.h
@@ -27,13 +27,12 @@
typedef short DCTELEM;
void fdct_ifast (DCTELEM *data);
+void ff_jpeg_fdct_islow (DCTELEM *data);
void j_rev_dct (DCTELEM *data);
void fdct_mmx(DCTELEM *block);
-extern void (*av_fdct)(DCTELEM *block);
-
/* encoding scans */
extern UINT8 ff_alternate_horizontal_scan[64];
extern UINT8 ff_alternate_vertical_scan[64];
diff --git a/libavcodec/i386/dsputil_mmx.c b/libavcodec/i386/dsputil_mmx.c
index 02558604bc..f1bace79dd 100644
--- a/libavcodec/i386/dsputil_mmx.c
+++ b/libavcodec/i386/dsputil_mmx.c
@@ -424,8 +424,6 @@ void dsputil_init_mmx(void)
pix_abs8x8_y2 = pix_abs8x8_y2_mmx;
pix_abs8x8_xy2= pix_abs8x8_xy2_mmx;
- av_fdct = fdct_mmx;
-
put_pixels_tab[0] = put_pixels_mmx;
put_pixels_tab[1] = put_pixels_x2_mmx;
put_pixels_tab[2] = put_pixels_y2_mmx;
diff --git a/libavcodec/i386/mpegvideo_mmx.c b/libavcodec/i386/mpegvideo_mmx.c
index fceccf7bd2..10efc173f3 100644
--- a/libavcodec/i386/mpegvideo_mmx.c
+++ b/libavcodec/i386/mpegvideo_mmx.c
@@ -552,16 +552,21 @@ void unused_var_warning_killer(){
void MPV_common_init_mmx(MpegEncContext *s)
{
if (mm_flags & MM_MMX) {
+ const int dct_algo= s->avctx->dct_algo;
s->dct_unquantize_h263 = dct_unquantize_h263_mmx;
s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_mmx;
s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_mmx;
draw_edges = draw_edges_mmx;
- if(mm_flags & MM_MMXEXT){
- dct_quantize= dct_quantize_MMX2;
- } else {
- dct_quantize= dct_quantize_MMX;
+ if(dct_algo==FF_DCT_AUTO || dct_algo==FF_DCT_MMX){
+ s->fdct = fdct_mmx;
+
+ if(mm_flags & MM_MMXEXT){
+ s->dct_quantize= dct_quantize_MMX2;
+ } else {
+ s->dct_quantize= dct_quantize_MMX;
+ }
}
}
}
diff --git a/libavcodec/i386/mpegvideo_mmx_template.c b/libavcodec/i386/mpegvideo_mmx_template.c
index d84f253013..6c3e52ea5f 100644
--- a/libavcodec/i386/mpegvideo_mmx_template.c
+++ b/libavcodec/i386/mpegvideo_mmx_template.c
@@ -40,7 +40,8 @@ static int RENAME(dct_quantize)(MpegEncContext *s,
const UINT16 *qmat, *bias;
static __align8 INT16 temp_block[64];
- av_fdct (block);
+ //s->fdct (block);
+ fdct_mmx (block); //cant be anything else ...
if (s->mb_intra) {
int dummy;
diff --git a/libavcodec/jfdctint.c b/libavcodec/jfdctint.c
new file mode 100644
index 0000000000..b10419627a
--- /dev/null
+++ b/libavcodec/jfdctint.c
@@ -0,0 +1,290 @@
+/*
+ * jfdctint.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ */
+
+#include <stdlib.h>
+#include <stdio.h>
+#include "common.h"
+#include "dsputil.h"
+
+#define SHIFT_TEMPS
+#define DCTSIZE 8
+#define GLOBAL(x) x
+#define RIGHT_SHIFT(x, n) ((x) >> (n))
+
+#if 1 //def USE_ACCURATE_ROUNDING
+#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
+#else
+#define DESCALE(x,n) RIGHT_SHIFT(x, n)
+#endif
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true DCT outputs. The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm. The advantage of
+ * this arrangement is that we save two multiplications per 1-D DCT,
+ * because the y0 and y4 outputs need not be divided by sqrt(N).
+ * In the IJG code, this factor of 8 is removed by the quantization step
+ * (in jcdctmgr.c), NOT in this module.
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic. We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants). After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output. This division can be done
+ * cheaply as a right shift of CONST_BITS bits. We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision. These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling. (For 12-bit sample data, the intermediate
+ * array is INT32 anyway.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
+#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
+#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
+#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
+#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
+#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
+#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
+#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336 FIX(0.298631336)
+#define FIX_0_390180644 FIX(0.390180644)
+#define FIX_0_541196100 FIX(0.541196100)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_175875602 FIX(1.175875602)
+#define FIX_1_501321110 FIX(1.501321110)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_1_961570560 FIX(1.961570560)
+#define FIX_2_053119869 FIX(2.053119869)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_072711026 FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const) ((var) * (const))
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+ff_jpeg_fdct_islow (DCTELEM * data)
+{
+ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ INT32 tmp10, tmp11, tmp12, tmp13;
+ INT32 z1, z2, z3, z4, z5;
+ DCTELEM *dataptr;
+ int ctr;
+ SHIFT_TEMPS
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[0] + dataptr[7];
+ tmp7 = dataptr[0] - dataptr[7];
+ tmp1 = dataptr[1] + dataptr[6];
+ tmp6 = dataptr[1] - dataptr[6];
+ tmp2 = dataptr[2] + dataptr[5];
+ tmp5 = dataptr[2] - dataptr[5];
+ tmp3 = dataptr[3] + dataptr[4];
+ tmp4 = dataptr[3] - dataptr[4];
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
+ dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+ CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+ CONST_BITS-PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents cos(K*pi/16).
+ * i0..i3 in the paper are tmp4..tmp7 here.
+ */
+
+ z1 = tmp4 + tmp7;
+ z2 = tmp5 + tmp6;
+ z3 = tmp4 + tmp6;
+ z4 = tmp5 + tmp7;
+ z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+
+ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+
+ z3 += z5;
+ z4 += z5;
+
+ dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
+ dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns.
+ * We remove the PASS1_BITS scaling, but leave the results scaled up
+ * by an overall factor of 8.
+ */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part per LL&M figure 1 --- note that published figure is faulty;
+ * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+ */
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
+
+ z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+ CONST_BITS+PASS1_BITS);
+
+ /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+ * cK represents cos(K*pi/16).
+ * i0..i3 in the paper are tmp4..tmp7 here.
+ */
+
+ z1 = tmp4 + tmp7;
+ z2 = tmp5 + tmp6;
+ z3 = tmp4 + tmp6;
+ z4 = tmp5 + tmp7;
+ z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+
+ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+
+ z3 += z5;
+ z4 += z5;
+
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
+ CONST_BITS+PASS1_BITS);
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
+ CONST_BITS+PASS1_BITS);
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
diff --git a/libavcodec/mpegvideo.c b/libavcodec/mpegvideo.c
index 3ffbaa2533..7f1f4f2b6b 100644
--- a/libavcodec/mpegvideo.c
+++ b/libavcodec/mpegvideo.c
@@ -36,7 +36,6 @@ static void dct_unquantize_h263_c(MpegEncContext *s,
static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w);
static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
-int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow)= dct_quantize_c;
void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c;
static void emulated_edge_mc(MpegEncContext *s, UINT8 *src, int linesize, int block_w, int block_h,
int src_x, int src_y, int w, int h);
@@ -76,14 +75,25 @@ extern UINT8 zigzag_end[64];
/* default motion estimation */
int motion_estimation_method = ME_EPZS;
-static void convert_matrix(int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64],
+static void convert_matrix(MpegEncContext *s, int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64],
const UINT16 *quant_matrix, int bias)
{
int qscale;
for(qscale=1; qscale<32; qscale++){
int i;
- if (av_fdct == fdct_ifast) {
+ if (s->fdct == ff_jpeg_fdct_islow) {
+ for(i=0;i<64;i++) {
+ const int j= block_permute_op(i);
+ /* 16 <= qscale * quant_matrix[i] <= 7905 */
+ /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */
+ /* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */
+ /* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
+
+ qmat[qscale][j] = (int)((UINT64_C(1) << (QMAT_SHIFT-3)) /
+ (qscale * quant_matrix[j]));
+ }
+ } else if (s->fdct == fdct_ifast) {
for(i=0;i<64;i++) {
const int j= block_permute_op(i);
/* 16 <= qscale * quant_matrix[i] <= 7905 */
@@ -130,6 +140,12 @@ int MPV_common_init(MpegEncContext *s)
s->dct_unquantize_h263 = dct_unquantize_h263_c;
s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_c;
s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_c;
+ s->dct_quantize= dct_quantize_c;
+
+ if(s->avctx->dct_algo==FF_DCT_FASTINT)
+ s->fdct = fdct_ifast;
+ else
+ s->fdct = ff_jpeg_fdct_islow;
#ifdef HAVE_MMX
MPV_common_init_mmx(s);
@@ -563,9 +579,9 @@ int MPV_encode_init(AVCodecContext *avctx)
/* precompute matrix */
/* for mjpeg, we do include qscale in the matrix */
if (s->out_format != FMT_MJPEG) {
- convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias,
+ convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias,
s->intra_matrix, s->intra_quant_bias);
- convert_matrix(s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias,
+ convert_matrix(s, s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias,
s->inter_matrix, s->inter_quant_bias);
}
@@ -1812,14 +1828,14 @@ static void encode_mb(MpegEncContext *s, int motion_x, int motion_y)
if(s->out_format==FMT_MJPEG){
for(i=0;i<6;i++) {
int overflow;
- s->block_last_index[i] = dct_quantize(s, s->block[i], i, 8, &overflow);
+ s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, 8, &overflow);
if (overflow) clip_coeffs(s, s->block[i], s->block_last_index[i]);
}
}else{
for(i=0;i<6;i++) {
if(!skip_dct[i]){
int overflow;
- s->block_last_index[i] = dct_quantize(s, s->block[i], i, s->qscale, &overflow);
+ s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, s->qscale, &overflow);
// FIXME we could decide to change to quantizer instead of clipping
// JS: I don't think that would be a good idea it could lower quality instead
// of improve it. Just INTRADC clipping deserves changes in quantizer
@@ -2081,7 +2097,7 @@ static void encode_picture(MpegEncContext *s, int picture_number)
s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
for(i=1;i<64;i++)
s->intra_matrix[i] = CLAMP_TO_8BIT((ff_mpeg1_default_intra_matrix[i] * s->qscale) >> 3);
- convert_matrix(s->q_intra_matrix, s->q_intra_matrix16,
+ convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16,
s->q_intra_matrix16_bias, s->intra_matrix, s->intra_quant_bias);
}
@@ -2446,7 +2462,7 @@ static int dct_quantize_c(MpegEncContext *s,
int max=0;
unsigned int threshold1, threshold2;
- av_fdct (block);
+ s->fdct (block);
/* we need this permutation so that we correct the IDCT
permutation. will be moved into DCT code */
diff --git a/libavcodec/mpegvideo.h b/libavcodec/mpegvideo.h
index ce9282c5f5..d4766dc562 100644
--- a/libavcodec/mpegvideo.h
+++ b/libavcodec/mpegvideo.h
@@ -465,6 +465,8 @@ typedef struct MpegEncContext {
DCTELEM *block, int n, int qscale);
void (*dct_unquantize)(struct MpegEncContext *s, // unquantizer to use (mpeg4 can use both)
DCTELEM *block, int n, int qscale);
+ int (*dct_quantize)(struct MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
+ void (*fdct)(DCTELEM *block);
} MpegEncContext;
int MPV_common_init(MpegEncContext *s);
@@ -478,7 +480,6 @@ void MPV_common_init_mmx(MpegEncContext *s);
#ifdef ARCH_ALPHA
void MPV_common_init_axp(MpegEncContext *s);
#endif
-extern int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
extern void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w);
void ff_conceal_past_errors(MpegEncContext *s, int conceal_all);
void ff_copy_bits(PutBitContext *pb, UINT8 *src, int length);