summaryrefslogtreecommitdiff
path: root/libavcodec/fft.c
diff options
context:
space:
mode:
authorFabrice Bellard <fabrice@bellard.org>2002-10-28 00:34:08 +0000
committerFabrice Bellard <fabrice@bellard.org>2002-10-28 00:34:08 +0000
commitbb6f5690728486b71e280a295aef4c49d25ee758 (patch)
treebb4def001175ea9c928da56cc2eb8cbcc77488b1 /libavcodec/fft.c
parent6d291820978ee1058f7154ed0b8cb7377c8bed51 (diff)
new generic FFT/MDCT code for audio codecs
Originally committed as revision 1088 to svn://svn.ffmpeg.org/ffmpeg/trunk
Diffstat (limited to 'libavcodec/fft.c')
-rw-r--r--libavcodec/fft.c229
1 files changed, 229 insertions, 0 deletions
diff --git a/libavcodec/fft.c b/libavcodec/fft.c
new file mode 100644
index 0000000000..0f5181ac3c
--- /dev/null
+++ b/libavcodec/fft.c
@@ -0,0 +1,229 @@
+/*
+ * FFT/IFFT transforms
+ * Copyright (c) 2002 Fabrice Bellard.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "dsputil.h"
+
+/**
+ * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
+ * done
+ */
+int fft_init(FFTContext *s, int nbits, int inverse)
+{
+ int i, j, m, n;
+ float alpha, c1, s1, s2;
+
+ s->nbits = nbits;
+ n = 1 << nbits;
+
+ s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
+ if (!s->exptab)
+ goto fail;
+ s->revtab = av_malloc(n * sizeof(uint16_t));
+ if (!s->revtab)
+ goto fail;
+ s->inverse = inverse;
+
+ s2 = inverse ? 1.0 : -1.0;
+
+ for(i=0;i<(n/2);i++) {
+ alpha = 2 * M_PI * (float)i / (float)n;
+ c1 = cos(alpha);
+ s1 = sin(alpha) * s2;
+ s->exptab[i].re = c1;
+ s->exptab[i].im = s1;
+ }
+ s->fft_calc = fft_calc_c;
+ s->exptab1 = NULL;
+
+ /* compute constant table for HAVE_SSE version */
+#if defined(HAVE_MMX) && 0
+ if (mm_flags & MM_SSE) {
+ int np, nblocks, np2, l;
+ FFTComplex *q;
+
+ np = 1 << nbits;
+ nblocks = np >> 3;
+ np2 = np >> 1;
+ s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
+ if (!s->exptab1)
+ goto fail;
+ q = s->exptab1;
+ do {
+ for(l = 0; l < np2; l += 2 * nblocks) {
+ *q++ = s->exptab[l];
+ *q++ = s->exptab[l + nblocks];
+
+ q->re = -s->exptab[l].im;
+ q->im = s->exptab[l].re;
+ q++;
+ q->re = -s->exptab[l + nblocks].im;
+ q->im = s->exptab[l + nblocks].re;
+ q++;
+ }
+ nblocks = nblocks >> 1;
+ } while (nblocks != 0);
+ av_freep(&s->exptab);
+ }
+#endif
+
+ /* compute bit reverse table */
+
+ for(i=0;i<n;i++) {
+ m=0;
+ for(j=0;j<nbits;j++) {
+ m |= ((i >> j) & 1) << (nbits-j-1);
+ }
+ s->revtab[i]=m;
+ }
+ return 0;
+ fail:
+ av_freep(&s->revtab);
+ av_freep(&s->exptab);
+ av_freep(&s->exptab1);
+ return -1;
+}
+
+/* butter fly op */
+#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
+{\
+ FFTSample ax, ay, bx, by;\
+ bx=pre1;\
+ by=pim1;\
+ ax=qre1;\
+ ay=qim1;\
+ pre = (bx + ax);\
+ pim = (by + ay);\
+ qre = (bx - ax);\
+ qim = (by - ay);\
+}
+
+#define MUL16(a,b) ((a) * (b))
+
+#define CMUL(pre, pim, are, aim, bre, bim) \
+{\
+ pre = (MUL16(are, bre) - MUL16(aim, bim));\
+ pim = (MUL16(are, bim) + MUL16(bre, aim));\
+}
+
+/**
+ * Do a complex FFT with the parameters defined in fft_init(). The
+ * input data must be permuted before with s->revtab table. No
+ * 1.0/sqrt(n) normalization is done.
+ */
+void fft_calc_c(FFTContext *s, FFTComplex *z)
+{
+ int ln = s->nbits;
+ int j, np, np2;
+ int nblocks, nloops;
+ register FFTComplex *p, *q;
+ FFTComplex *exptab = s->exptab;
+ int l;
+ FFTSample tmp_re, tmp_im;
+
+ np = 1 << ln;
+
+ /* pass 0 */
+
+ p=&z[0];
+ j=(np >> 1);
+ do {
+ BF(p[0].re, p[0].im, p[1].re, p[1].im,
+ p[0].re, p[0].im, p[1].re, p[1].im);
+ p+=2;
+ } while (--j != 0);
+
+ /* pass 1 */
+
+
+ p=&z[0];
+ j=np >> 2;
+ if (s->inverse) {
+ do {
+ BF(p[0].re, p[0].im, p[2].re, p[2].im,
+ p[0].re, p[0].im, p[2].re, p[2].im);
+ BF(p[1].re, p[1].im, p[3].re, p[3].im,
+ p[1].re, p[1].im, -p[3].im, p[3].re);
+ p+=4;
+ } while (--j != 0);
+ } else {
+ do {
+ BF(p[0].re, p[0].im, p[2].re, p[2].im,
+ p[0].re, p[0].im, p[2].re, p[2].im);
+ BF(p[1].re, p[1].im, p[3].re, p[3].im,
+ p[1].re, p[1].im, p[3].im, -p[3].re);
+ p+=4;
+ } while (--j != 0);
+ }
+ /* pass 2 .. ln-1 */
+
+ nblocks = np >> 3;
+ nloops = 1 << 2;
+ np2 = np >> 1;
+ do {
+ p = z;
+ q = z + nloops;
+ for (j = 0; j < nblocks; ++j) {
+ BF(p->re, p->im, q->re, q->im,
+ p->re, p->im, q->re, q->im);
+
+ p++;
+ q++;
+ for(l = nblocks; l < np2; l += nblocks) {
+ CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
+ BF(p->re, p->im, q->re, q->im,
+ p->re, p->im, tmp_re, tmp_im);
+ p++;
+ q++;
+ }
+
+ p += nloops;
+ q += nloops;
+ }
+ nblocks = nblocks >> 1;
+ nloops = nloops << 1;
+ } while (nblocks != 0);
+}
+
+/**
+ * Do the permutation needed BEFORE calling fft_calc()
+ */
+void fft_permute(FFTContext *s, FFTComplex *z)
+{
+ int j, k, np;
+ FFTComplex tmp;
+ const uint16_t *revtab = s->revtab;
+
+ /* reverse */
+ np = 1 << s->nbits;
+ for(j=0;j<np;j++) {
+ k = revtab[j];
+ if (k < j) {
+ tmp = z[k];
+ z[k] = z[j];
+ z[j] = tmp;
+ }
+ }
+}
+
+void fft_end(FFTContext *s)
+{
+ av_freep(&s->revtab);
+ av_freep(&s->exptab);
+ av_freep(&s->exptab1);
+}
+