summaryrefslogtreecommitdiff
path: root/libavcodec/dcaenc.c
diff options
context:
space:
mode:
authorPaul B Mahol <onemda@gmail.com>2013-04-24 09:41:36 +0000
committerPaul B Mahol <onemda@gmail.com>2013-04-25 14:21:00 +0000
commite1ba5fc96838fdadec2c36820c44af54bd8386eb (patch)
tree0e5fd60e8f9307f816031ef1d520f579917702b5 /libavcodec/dcaenc.c
parent8f0db04b086925f5358ef605e2a77bee041e5dbf (diff)
dcaenc: update
Long story short: previous code was useless and was port of older dcaenc, this commit just "sync" with current dcaenc, hopefuly making this encoder more useful. Signed-off-by: Paul B Mahol <onemda@gmail.com>
Diffstat (limited to 'libavcodec/dcaenc.c')
-rw-r--r--libavcodec/dcaenc.c1079
1 files changed, 723 insertions, 356 deletions
diff --git a/libavcodec/dcaenc.c b/libavcodec/dcaenc.c
index 4799ef40bd..d2862b19d7 100644
--- a/libavcodec/dcaenc.c
+++ b/libavcodec/dcaenc.c
@@ -1,6 +1,6 @@
/*
* DCA encoder
- * Copyright (C) 2008 Alexander E. Patrakov
+ * Copyright (C) 2008-2012 Alexander E. Patrakov
* 2010 Benjamin Larsson
* 2011 Xiang Wang
*
@@ -21,211 +21,678 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
+#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/common.h"
-#include "libavutil/avassert.h"
#include "avcodec.h"
+#include "dca.h"
+#include "dcadata.h"
+#include "dcaenc.h"
#include "internal.h"
#include "put_bits.h"
-#include "dcaenc.h"
-#include "dcadata.h"
-#include "dca.h"
-
-#undef NDEBUG
#define MAX_CHANNELS 6
-#define DCA_SUBBANDS_32 32
-#define DCA_MAX_FRAME_SIZE 16383
+#define DCA_MAX_FRAME_SIZE 16384
#define DCA_HEADER_SIZE 13
+#define DCA_LFE_SAMPLES 8
-#define DCA_SUBBANDS 32 ///< Subband activity count
-#define QUANTIZER_BITS 16
+#define DCA_SUBBANDS 32
#define SUBFRAMES 1
-#define SUBSUBFRAMES 4
-#define PCM_SAMPLES (SUBFRAMES*SUBSUBFRAMES*8)
-#define LFE_BITS 8
-#define LFE_INTERPOLATION 64
-#define LFE_PRESENT 2
-#define LFE_MISSING 0
-
-static const int8_t dca_lfe_index[] = {
- 1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
-};
-
-static const int8_t dca_channel_reorder_lfe[][9] = {
- { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 1, 2, 0, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, 2, -1, -1, -1, -1, -1 },
- { 1, 2, 0, -1, 3, -1, -1, -1, -1 },
- { 0, 1, -1, 2, 3, -1, -1, -1, -1 },
- { 1, 2, 0, -1, 3, 4, -1, -1, -1 },
- { 2, 3, -1, 0, 1, 4, 5, -1, -1 },
- { 1, 2, 0, -1, 3, 4, 5, -1, -1 },
- { 0, -1, 4, 5, 2, 3, 1, -1, -1 },
- { 3, 4, 1, -1, 0, 2, 5, 6, -1 },
- { 2, 3, -1, 5, 7, 0, 1, 4, 6 },
- { 3, 4, 1, -1, 0, 2, 5, 7, 6 },
-};
+#define SUBSUBFRAMES 2
+#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
+#define AUBANDS 25
-static const int8_t dca_channel_reorder_nolfe[][9] = {
- { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
- { 1, 2, 0, -1, -1, -1, -1, -1, -1 },
- { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
- { 1, 2, 0, 3, -1, -1, -1, -1, -1 },
- { 0, 1, 2, 3, -1, -1, -1, -1, -1 },
- { 1, 2, 0, 3, 4, -1, -1, -1, -1 },
- { 2, 3, 0, 1, 4, 5, -1, -1, -1 },
- { 1, 2, 0, 3, 4, 5, -1, -1, -1 },
- { 0, 4, 5, 2, 3, 1, -1, -1, -1 },
- { 3, 4, 1, 0, 2, 5, 6, -1, -1 },
- { 2, 3, 5, 7, 0, 1, 4, 6, -1 },
- { 3, 4, 1, 0, 2, 5, 7, 6, -1 },
-};
-
-typedef struct {
+typedef struct DCAContext {
PutBitContext pb;
- int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
- int start[MAX_CHANNELS];
int frame_size;
- int prim_channels;
+ int frame_bits;
+ int fullband_channels;
+ int channels;
int lfe_channel;
- int sample_rate_code;
- int scale_factor[MAX_CHANNELS][DCA_SUBBANDS_32];
+ int samplerate_index;
+ int bitrate_index;
+ int channel_config;
+ const int32_t *band_interpolation;
+ const int32_t *band_spectrum;
int lfe_scale_factor;
- int lfe_data[SUBFRAMES*SUBSUBFRAMES*4];
+ softfloat lfe_quant;
+ int32_t lfe_peak_cb;
+
+ int32_t history[512][MAX_CHANNELS]; /* This is a circular buffer */
+ int32_t subband[SUBBAND_SAMPLES][DCA_SUBBANDS][MAX_CHANNELS];
+ int32_t quantized[SUBBAND_SAMPLES][DCA_SUBBANDS][MAX_CHANNELS];
+ int32_t peak_cb[DCA_SUBBANDS][MAX_CHANNELS];
+ int32_t downsampled_lfe[DCA_LFE_SAMPLES];
+ int32_t masking_curve_cb[SUBSUBFRAMES][256];
+ int abits[DCA_SUBBANDS][MAX_CHANNELS];
+ int scale_factor[DCA_SUBBANDS][MAX_CHANNELS];
+ softfloat quant[DCA_SUBBANDS][MAX_CHANNELS];
+ int32_t eff_masking_curve_cb[256];
+ int32_t band_masking_cb[32];
+ int32_t worst_quantization_noise;
+ int32_t worst_noise_ever;
+ int consumed_bits;
+} DCAContext;
- int a_mode; ///< audio channels arrangement
- int num_channel;
- int lfe_state;
- int lfe_offset;
- const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
+static int32_t cos_table[2048];
+static int32_t band_interpolation[2][512];
+static int32_t band_spectrum[2][8];
+static int32_t auf[9][AUBANDS][256];
+static int32_t cb_to_add[256];
+static int32_t cb_to_level[2048];
+static int32_t lfe_fir_64i[512];
- int32_t pcm[FFMAX(LFE_INTERPOLATION, DCA_SUBBANDS_32)];
- int32_t subband[PCM_SAMPLES][MAX_CHANNELS][DCA_SUBBANDS_32]; /* [sample][channel][subband] */
-} DCAContext;
+/* Transfer function of outer and middle ear, Hz -> dB */
+static double hom(double f)
+{
+ double f1 = f / 1000;
+
+ return -3.64 * pow(f1, -0.8)
+ + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
+ - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
+ - 0.0006 * (f1 * f1) * (f1 * f1);
+}
+
+static double gammafilter(int i, double f)
+{
+ double h = (f - fc[i]) / erb[i];
+
+ h = 1 + h * h;
+ h = 1 / (h * h);
+ return 20 * log10(h);
+}
+
+static int encode_init(AVCodecContext *avctx)
+{
+ DCAContext *c = avctx->priv_data;
+ uint64_t layout = avctx->channel_layout;
+ int i, min_frame_bits;
+
+ c->fullband_channels = c->channels = avctx->channels;
+ c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
+ c->band_interpolation = band_interpolation[1];
+ c->band_spectrum = band_spectrum[1];
+ c->worst_quantization_noise = -2047;
+ c->worst_noise_ever = -2047;
+
+ if (!layout) {
+ av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
+ "encoder will guess the layout, but it "
+ "might be incorrect.\n");
+ layout = av_get_default_channel_layout(avctx->channels);
+ }
+ switch (layout) {
+ case AV_CH_LAYOUT_MONO: c->channel_config = 0; break;
+ case AV_CH_LAYOUT_STEREO: c->channel_config = 2; break;
+ case AV_CH_LAYOUT_2_2: c->channel_config = 8; break;
+ case AV_CH_LAYOUT_5POINT0: c->channel_config = 9; break;
+ case AV_CH_LAYOUT_5POINT1: c->channel_config = 9; break;
+ default:
+ av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
+ return AVERROR_PATCHWELCOME;
+ }
+
+ if (c->lfe_channel)
+ c->fullband_channels--;
+
+ for (i = 0; i < 9; i++) {
+ if (sample_rates[i] == avctx->sample_rate)
+ break;
+ }
+ if (i == 9)
+ return AVERROR(EINVAL);
+ c->samplerate_index = i;
+
+ if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
+ av_log(avctx, AV_LOG_ERROR, "Bit rate %i not supported.", avctx->bit_rate);
+ return AVERROR(EINVAL);
+ }
+ for (i = 0; dca_bit_rates[i] < avctx->bit_rate; i++)
+ ;
+ c->bitrate_index = i;
+ avctx->bit_rate = dca_bit_rates[i];
+ c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
+ min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
+ if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
+ return AVERROR(EINVAL);
+
+ c->frame_size = (c->frame_bits + 7) / 8;
+
+ avctx->frame_size = 32 * SUBBAND_SAMPLES;
+
+ if (!cos_table[0]) {
+ int j, k;
+
+ for (i = 0; i < 2048; i++) {
+ cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
+ cb_to_level[i] = (int32_t)(0x7fffffff * pow(10, -0.005 * i));
+ }
+
+ for (i = 0; i < 512; i++) {
+ lfe_fir_64i[i] = (int32_t)(0x01ffffff * lfe_fir_64[i]);
+ band_interpolation[0][i] = (int32_t)(0x1000000000ULL * fir_32bands_perfect[i]);
+ band_interpolation[1][i] = (int32_t)(0x1000000000ULL * fir_32bands_nonperfect[i]);
+ }
+
+ for (i = 0; i < 9; i++) {
+ for (j = 0; j < AUBANDS; j++) {
+ for (k = 0; k < 256; k++) {
+ double freq = sample_rates[i] * (k + 0.5) / 512;
+
+ auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
+ }
+ }
+ }
+
+ for (i = 0; i < 256; i++) {
+ double add = 1 + pow(10, -0.01 * i);
+ cb_to_add[i] = (int32_t)(100 * log10(add));
+ }
+ for (j = 0; j < 8; j++) {
+ double accum = 0;
+ for (i = 0; i < 512; i++) {
+ double reconst = fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
+ accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
+ }
+ band_spectrum[0][j] = (int32_t)(200 * log10(accum));
+ }
+ for (j = 0; j < 8; j++) {
+ double accum = 0;
+ for (i = 0; i < 512; i++) {
+ double reconst = fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
+ accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
+ }
+ band_spectrum[1][j] = (int32_t)(200 * log10(accum));
+ }
+ }
+ return 0;
+}
+
+static inline int32_t cos_t(int x)
+{
+ return cos_table[x & 2047];
+}
+
+static inline int32_t sin_t(int x)
+{
+ return cos_t(x - 512);
+}
-static int32_t cos_table[128];
+static inline int32_t half32(int32_t a)
+{
+ return (a + 1) >> 1;
+}
static inline int32_t mul32(int32_t a, int32_t b)
{
- int64_t r = (int64_t) a * b;
- /* round the result before truncating - improves accuracy */
- return (r + 0x80000000) >> 32;
+ int64_t r = (int64_t)a * b + 0x80000000ULL;
+ return r >> 32;
+}
+
+static void subband_transform(DCAContext *c, const int32_t *input)
+{
+ int ch, subs, i, k, j;
+
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ /* History is copied because it is also needed for PSY */
+ int32_t hist[512];
+ int hist_start = 0;
+
+ for (i = 0; i < 512; i++)
+ hist[i] = c->history[i][ch];
+
+ for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
+ int32_t accum[64];
+ int32_t resp;
+ int band;
+
+ /* Calculate the convolutions at once */
+ for (i = 0; i < 64; i++)
+ accum[i] = 0;
+
+ for (k = 0, i = hist_start, j = 0;
+ i < 512; k = (k + 1) & 63, i++, j++)
+ accum[k] += mul32(hist[i], c->band_interpolation[j]);
+ for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
+ accum[k] += mul32(hist[i], c->band_interpolation[j]);
+
+ for (k = 16; k < 32; k++)
+ accum[k] = accum[k] - accum[31 - k];
+ for (k = 32; k < 48; k++)
+ accum[k] = accum[k] + accum[95 - k];
+
+ for (band = 0; band < 32; band++) {
+ resp = 0;
+ for (i = 16; i < 48; i++) {
+ int s = (2 * band + 1) * (2 * (i + 16) + 1);
+ resp += mul32(accum[i], cos_t(s << 3)) >> 3;
+ }
+
+ c->subband[subs][band][ch] = ((band + 1) & 2) ? -resp : resp;
+ }
+
+ /* Copy in 32 new samples from input */
+ for (i = 0; i < 32; i++)
+ hist[i + hist_start] = input[(subs * 32 + i) * c->channels + ch];
+ hist_start = (hist_start + 32) & 511;
+ }
+ }
+}
+
+static void lfe_downsample(DCAContext *c, const int32_t *input)
+{
+ /* FIXME: make 128x LFE downsampling possible */
+ int i, j, lfes;
+ int32_t hist[512];
+ int32_t accum;
+ int hist_start = 0;
+
+ for (i = 0; i < 512; i++)
+ hist[i] = c->history[i][c->channels - 1];
+
+ for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
+ /* Calculate the convolution */
+ accum = 0;
+
+ for (i = hist_start, j = 0; i < 512; i++, j++)
+ accum += mul32(hist[i], lfe_fir_64i[j]);
+ for (i = 0; i < hist_start; i++, j++)
+ accum += mul32(hist[i], lfe_fir_64i[j]);
+
+ c->downsampled_lfe[lfes] = accum;
+
+ /* Copy in 64 new samples from input */
+ for (i = 0; i < 64; i++)
+ hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + c->channels - 1];
+
+ hist_start = (hist_start + 64) & 511;
+ }
}
-/* Integer version of the cosine modulated Pseudo QMF */
+typedef struct {
+ int32_t re;
+ int32_t im;
+} cplx32;
-static void qmf_init(void)
+static void fft(const int32_t in[2 * 256], cplx32 out[256])
{
- int i;
- int32_t c[17], s[17];
- s[0] = 0; /* sin(index * PI / 64) * 0x7fffffff */
- c[0] = 0x7fffffff; /* cos(index * PI / 64) * 0x7fffffff */
-
- for (i = 1; i <= 16; i++) {
- s[i] = 2 * (mul32(c[i - 1], 105372028) + mul32(s[i - 1], 2144896908));
- c[i] = 2 * (mul32(c[i - 1], 2144896908) - mul32(s[i - 1], 105372028));
+ cplx32 buf[256], rin[256], rout[256];
+ int i, j, k, l;
+
+ /* do two transforms in parallel */
+ for (i = 0; i < 256; i++) {
+ /* Apply the Hann window */
+ rin[i].re = mul32(in[2 * i], 0x3fffffff - (cos_t(8 * i + 2) >> 1));
+ rin[i].im = mul32(in[2 * i + 1], 0x3fffffff - (cos_t(8 * i + 6) >> 1));
+ }
+ /* pre-rotation */
+ for (i = 0; i < 256; i++) {
+ buf[i].re = mul32(cos_t(4 * i + 2), rin[i].re)
+ - mul32(sin_t(4 * i + 2), rin[i].im);
+ buf[i].im = mul32(cos_t(4 * i + 2), rin[i].im)
+ + mul32(sin_t(4 * i + 2), rin[i].re);
+ }
+
+ for (j = 256, l = 1; j != 1; j >>= 1, l <<= 1) {
+ for (k = 0; k < 256; k += j) {
+ for (i = k; i < k + j / 2; i++) {
+ cplx32 sum, diff;
+ int t = 8 * l * i;
+
+ sum.re = buf[i].re + buf[i + j / 2].re;
+ sum.im = buf[i].im + buf[i + j / 2].im;
+
+ diff.re = buf[i].re - buf[i + j / 2].re;
+ diff.im = buf[i].im - buf[i + j / 2].im;
+
+ buf[i].re = half32(sum.re);
+ buf[i].im = half32(sum.im);
+
+ buf[i + j / 2].re = mul32(diff.re, cos_t(t))
+ - mul32(diff.im, sin_t(t));
+ buf[i + j / 2].im = mul32(diff.im, cos_t(t))
+ + mul32(diff.re, sin_t(t));
+ }
+ }
+ }
+ /* post-rotation */
+ for (i = 0; i < 256; i++) {
+ int b = ff_reverse[i];
+ rout[i].re = mul32(buf[b].re, cos_t(4 * i))
+ - mul32(buf[b].im, sin_t(4 * i));
+ rout[i].im = mul32(buf[b].im, cos_t(4 * i))
+ + mul32(buf[b].re, sin_t(4 * i));
+ }
+ for (i = 0; i < 256; i++) {
+ /* separate the results of the two transforms */
+ cplx32 o1, o2;
+
+ o1.re = rout[i].re - rout[255 - i].re;
+ o1.im = rout[i].im + rout[255 - i].im;
+
+ o2.re = rout[i].im - rout[255 - i].im;
+ o2.im = -rout[i].re - rout[255 - i].re;
+
+ /* combine them into one long transform */
+ out[i].re = mul32( o1.re + o2.re, cos_t(2 * i + 1))
+ + mul32( o1.im - o2.im, sin_t(2 * i + 1));
+ out[i].im = mul32( o1.im + o2.im, cos_t(2 * i + 1))
+ + mul32(-o1.re + o2.re, sin_t(2 * i + 1));
}
+}
- for (i = 0; i < 16; i++) {
- cos_table[i ] = c[i] >> 3; /* avoid output overflow */
- cos_table[i + 16] = s[16 - i] >> 3;
- cos_table[i + 32] = -s[i] >> 3;
- cos_table[i + 48] = -c[16 - i] >> 3;
- cos_table[i + 64] = -c[i] >> 3;
- cos_table[i + 80] = -s[16 - i] >> 3;
- cos_table[i + 96] = s[i] >> 3;
- cos_table[i + 112] = c[16 - i] >> 3;
+static int32_t get_cb(int32_t in)
+{
+ int i, res;
+
+ res = 0;
+ if (in < 0)
+ in = -in;
+ for (i = 1024; i > 0; i >>= 1) {
+ if (cb_to_level[i + res] >= in)
+ res += i;
}
+ return -res;
}
-static int32_t band_delta_factor(int band, int sample_num)
+static int32_t add_cb(int32_t a, int32_t b)
{
- int index = band * (2 * sample_num + 1);
- if (band == 0)
- return 0x07ffffff;
- else
- return cos_table[index & 127];
+ if (a < b)
+ FFSWAP(int32_t, a, b);
+
+ if (a - b >= 256)
+ return a;
+ return a + cb_to_add[a - b];
}
-static void add_new_samples(DCAContext *c, const int32_t *in,
- int count, int channel)
+static void adjust_jnd(int samplerate_index,
+ const int32_t in[512], int32_t out_cb[256])
{
- int i;
+ int32_t power[256];
+ cplx32 out[256];
+ int32_t out_cb_unnorm[256];
+ int32_t denom;
+ const int32_t ca_cb = -1114;
+ const int32_t cs_cb = 928;
+ int i, j;
+
+ fft(in, out);
- /* Place new samples into the history buffer */
- for (i = 0; i < count; i++) {
- c->history[channel][c->start[channel] + i] = in[i];
- av_assert0(c->start[channel] + i < 512);
+ for (j = 0; j < 256; j++) {
+ power[j] = add_cb(get_cb(out[j].re), get_cb(out[j].im));
+ out_cb_unnorm[j] = -2047; /* and can only grow */
}
- c->start[channel] += count;
- if (c->start[channel] == 512)
- c->start[channel] = 0;
- av_assert0(c->start[channel] < 512);
+
+ for (i = 0; i < AUBANDS; i++) {
+ denom = ca_cb; /* and can only grow */
+ for (j = 0; j < 256; j++)
+ denom = add_cb(denom, power[j] + auf[samplerate_index][i][j]);
+ for (j = 0; j < 256; j++)
+ out_cb_unnorm[j] = add_cb(out_cb_unnorm[j],
+ -denom + auf[samplerate_index][i][j]);
+ }
+
+ for (j = 0; j < 256; j++)
+ out_cb[j] = add_cb(out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
}
-static void qmf_decompose(DCAContext *c, int32_t in[32], int32_t out[32],
- int channel)
+typedef void (*walk_band_t)(DCAContext *c, int band1, int band2, int f,
+ int32_t spectrum1, int32_t spectrum2, int channel,
+ int32_t * arg);
+
+static void walk_band_low(DCAContext *c, int band, int channel,
+ walk_band_t walk, int32_t *arg)
{
- int band, i, j, k;
- int32_t resp;
- int32_t accum[DCA_SUBBANDS_32] = {0};
+ int f;
- add_new_samples(c, in, DCA_SUBBANDS_32, channel);
+ if (band == 0) {
+ for (f = 0; f < 4; f++)
+ walk(c, 0, 0, f, 0, -2047, channel, arg);
+ } else {
+ for (f = 0; f < 8; f++)
+ walk(c, band, band - 1, 8 * band - 4 + f,
+ c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
+ }
+}
- /* Calculate the dot product of the signal with the (possibly inverted)
- reference decoder's response to this vector:
- (0.0, 0.0, ..., 0.0, -1.0, 1.0, 0.0, ..., 0.0)
- so that -1.0 cancels 1.0 from the previous step */
+static void walk_band_high(DCAContext *c, int band, int channel,
+ walk_band_t walk, int32_t *arg)
+{
+ int f;
- for (k = 48, j = 0, i = c->start[channel]; i < 512; k++, j++, i++)
- accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]);
- for (i = 0; i < c->start[channel]; k++, j++, i++)
- accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]);
+ if (band == 31) {
+ for (f = 0; f < 4; f++)
+ walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
+ } else {
+ for (f = 0; f < 8; f++)
+ walk(c, band, band + 1, 8 * band + 4 + f,
+ c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
+ }
+}
- resp = 0;
- /* TODO: implement FFT instead of this naive calculation */
- for (band = 0; band < DCA_SUBBANDS_32; band++) {
- for (j = 0; j < 32; j++)
- resp += mul32(accum[j], band_delta_factor(band, j));
+static void update_band_masking(DCAContext *c, int band1, int band2,
+ int f, int32_t spectrum1, int32_t spectrum2,
+ int channel, int32_t * arg)
+{
+ int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
- out[band] = (band & 2) ? (-resp) : resp;
+ if (value < c->band_masking_cb[band1])
+ c->band_masking_cb[band1] = value;
+}
+
+static void calc_masking(DCAContext *c, const int32_t *input)
+{
+ int i, k, band, ch, ssf;
+ int32_t data[512];
+
+ for (i = 0; i < 256; i++)
+ for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
+ c->masking_curve_cb[ssf][i] = -2047;
+
+ for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
+ data[i] = c->history[k][ch];
+ for (k -= 512; i < 512; i++, k++)
+ data[i] = input[k * c->channels + ch];
+ adjust_jnd(c->samplerate_index, data, c->masking_curve_cb[ssf]);
+ }
+ for (i = 0; i < 256; i++) {
+ int32_t m = 2048;
+
+ for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
+ if (c->masking_curve_cb[ssf][i] < m)
+ m = c->masking_curve_cb[ssf][i];
+ c->eff_masking_curve_cb[i] = m;
+ }
+
+ for (band = 0; band < 32; band++) {
+ c->band_masking_cb[band] = 2048;
+ walk_band_low(c, band, 0, update_band_masking, NULL);
+ walk_band_high(c, band, 0, update_band_masking, NULL);
}
}
-static int32_t lfe_fir_64i[512];
-static int lfe_downsample(DCAContext *c, int32_t in[LFE_INTERPOLATION])
+static void find_peaks(DCAContext *c)
{
- int i, j;
- int channel = c->prim_channels;
- int32_t accum = 0;
-
- add_new_samples(c, in, LFE_INTERPOLATION, channel);
- for (i = c->start[channel], j = 0; i < 512; i++, j++)
- accum += mul32(c->history[channel][i], lfe_fir_64i[j]);
- for (i = 0; i < c->start[channel]; i++, j++)
- accum += mul32(c->history[channel][i], lfe_fir_64i[j]);
- return accum;
+ int band, ch;
+
+ for (band = 0; band < 32; band++)
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ int sample;
+ int32_t m = 0;
+
+ for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
+ int32_t s = abs(c->subband[sample][band][ch]);
+ if (m < s)
+ m = s;
+ }
+ c->peak_cb[band][ch] = get_cb(m);
+ }
+
+ if (c->lfe_channel) {
+ int sample;
+ int32_t m = 0;
+
+ for (sample = 0; sample < DCA_LFE_SAMPLES; sample++)
+ if (m < abs(c->downsampled_lfe[sample]))
+ m = abs(c->downsampled_lfe[sample]);
+ c->lfe_peak_cb = get_cb(m);
+ }
}
-static void init_lfe_fir(void)
+static const int snr_fudge = 128;
+#define USED_1ABITS 1
+#define USED_NABITS 2
+#define USED_26ABITS 4
+
+static int init_quantization_noise(DCAContext *c, int noise)
{
- static int initialized = 0;
- int i;
- if (initialized)
- return;
+ int ch, band, ret = 0;
+
+ c->consumed_bits = 132 + 493 * c->fullband_channels;
+ if (c->lfe_channel)
+ c->consumed_bits += 72;
+
+ /* attempt to guess the bit distribution based on the prevoius frame */
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ for (band = 0; band < 32; band++) {
+ int snr_cb = c->peak_cb[band][ch] - c->band_masking_cb[band] - noise;
+
+ if (snr_cb >= 1312) {
+ c->abits[band][ch] = 26;
+ ret |= USED_26ABITS;
+ } else if (snr_cb >= 222) {
+ c->abits[band][ch] = 8 + mul32(snr_cb - 222, 69000000);
+ ret |= USED_NABITS;
+ } else if (snr_cb >= 0) {
+ c->abits[band][ch] = 2 + mul32(snr_cb, 106000000);
+ ret |= USED_NABITS;
+ } else {
+ c->abits[band][ch] = 1;
+ ret |= USED_1ABITS;
+ }
+ }
+ }
- for (i = 0; i < 512; i++)
- lfe_fir_64i[i] = lfe_fir_64[i] * (1 << 25); //float -> int32_t
- initialized = 1;
+ for (band = 0; band < 32; band++)
+ for (ch = 0; ch < c->fullband_channels; ch++) {
+ c->consumed_bits += bit_consumption[c->abits[band][ch]];
+ }
+
+ return ret;
+}
+
+static void assign_bits(DCAContext *c)
+{
+ /* Find the bounds where the binary search should work */
+ int low, high, down;
+ int used_abits = 0;
+
+ init_quantization_noise(c, c->worst_quantization_noise);
+ low = high = c->worst_quantization_noise;
+ if (c->consumed_bits > c->frame_bits) {
+ while (c->consumed_bits > c->frame_bits) {
+ av_assert0(used_abits != USED_1ABITS);
+ low = high;
+ high += snr_fudge;
+ used_abits = init_quantization_noise(c, high);
+ }
+ } else {
+ while (c->consumed_bits <= c->frame_bits) {
+ high = low;
+ if (used_abits == USED_26ABITS)
+ goto out; /* The requested bitrate is too high, pad with zeros */
+ low -= snr_fudge;
+ used_abits = init_quantization_noise(c, low);
+ }
+ }
+
+ /* Now do a binary search between low and high to see what fits */
+ for (down = snr_fudge >> 1; down; down >>= 1) {
+ init_quantization_noise(c, high - down);
+ if (c->consumed_bits <= c->frame_bits)
+ high -= down;
+ }
+ init_quantization_noise(c, high);
+out:
+ c->worst_quantization_noise = high;
+ if (high > c->worst_noise_ever)
+ c->worst_noise_ever = high;
+}
+
+static void shift_history(DCAContext *c, const int32_t *input)
+{
+ int k, ch;
+
+ for (k = 0; k < 512; k++)
+ for (ch = 0; ch < c->channels; ch++)
+ c->history[k][ch] = input[k * c->channels + ch];
+}
+
+static int32_t quantize_value(int32_t value, softfloat quant)
+{
+ int32_t offset = 1 << (quant.e - 1);
+
+ value = mul32(value, quant.m) + offset;
+ value = value >> quant.e;
+ return value;
+}
+
+static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
+{
+ int32_t peak;
+ int our_nscale, try_remove;
+ softfloat our_quant;
+
+ av_assert0(peak_cb <= 0);
+ av_assert0(peak_cb >= -2047);
+
+ our_nscale = 127;
+ peak = cb_to_level[-peak_cb];
+
+ for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
+ if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
+ continue;
+ our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
+ our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
+ if ((quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
+ continue;
+ our_nscale -= try_remove;
+ }
+
+ if (our_nscale >= 125)
+ our_nscale = 124;
+
+ quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
+ quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
+ av_assert0((quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
+
+ return our_nscale;
+}
+
+static void calc_scales(DCAContext *c)
+{
+ int band, ch;
+
+ for (band = 0; band < 32; band++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ c->scale_factor[band][ch] = calc_one_scale(c->peak_cb[band][ch],
+ c->abits[band][ch],
+ &c->quant[band][ch]);
+
+ if (c->lfe_channel)
+ c->lfe_scale_factor = calc_one_scale(c->lfe_peak_cb, 11, &c->lfe_quant);
+}
+
+static void quantize_all(DCAContext *c)
+{
+ int sample, band, ch;
+
+ for (sample = 0; sample < SUBBAND_SAMPLES; sample++)
+ for (band = 0; band < 32; band++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ c->quantized[sample][band][ch] = quantize_value(c->subband[sample][band][ch], c->quant[band][ch]);
}
static void put_frame_header(DCAContext *c)
@@ -244,19 +711,19 @@ static void put_frame_header(DCAContext *c)
put_bits(&c->pb, 1, 0);
/* Number of PCM sample blocks */
- put_bits(&c->pb, 7, PCM_SAMPLES-1);
+ put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
/* Primary frame byte size */
- put_bits(&c->pb, 14, c->frame_size-1);
+ put_bits(&c->pb, 14, c->frame_size - 1);
- /* Audio channel arrangement: L + R (stereo) */
- put_bits(&c->pb, 6, c->num_channel);
+ /* Audio channel arrangement */
+ put_bits(&c->pb, 6, c->channel_config);
/* Core audio sampling frequency */
- put_bits(&c->pb, 4, c->sample_rate_code);
+ put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);
- /* Transmission bit rate: 1411.2 kbps */
- put_bits(&c->pb, 5, 0x16); /* FIXME: magic number */
+ /* Transmission bit rate */
+ put_bits(&c->pb, 5, c->bitrate_index);
/* Embedded down mix: disabled */
put_bits(&c->pb, 1, 0);
@@ -282,8 +749,8 @@ static void put_frame_header(DCAContext *c)
/* Audio sync word insertion flag: after each sub-frame */
put_bits(&c->pb, 1, 0);
- /* Low frequency effects flag: not present or interpolation factor=64 */
- put_bits(&c->pb, 2, c->lfe_state);
+ /* Low frequency effects flag: not present or 64x subsampling */
+ put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
/* Predictor history switch flag: on */
put_bits(&c->pb, 1, 1);
@@ -321,82 +788,68 @@ static void put_primary_audio_header(DCAContext *c)
put_bits(&c->pb, 4, SUBFRAMES - 1);
/* Number of primary audio channels */
- put_bits(&c->pb, 3, c->prim_channels - 1);
+ put_bits(&c->pb, 3, c->fullband_channels - 1);
/* Subband activity count */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 5, DCA_SUBBANDS - 2);
/* High frequency VQ start subband */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 5, DCA_SUBBANDS - 1);
/* Joint intensity coding index: 0, 0 */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 3, 0);
/* Transient mode codebook: A4, A4 (arbitrary) */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 2, 0);
/* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 3, 6);
/* Bit allocation quantizer select: linear 5-bit */
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, 3, 6);
/* Quantization index codebook select: dummy data
to avoid transmission of scale factor adjustment */
-
for (i = 1; i < 11; i++)
- for (ch = 0; ch < c->prim_channels; ch++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
put_bits(&c->pb, bitlen[i], thr[i]);
/* Scale factor adjustment index: not transmitted */
+ /* Audio header CRC check word: not transmitted */
}
-/**
- * 8-23 bits quantization
- * @param sample
- * @param bits
- */
-static inline uint32_t quantize(int32_t sample, int bits)
-{
- av_assert0(sample < 1 << (bits - 1));
- av_assert0(sample >= -(1 << (bits - 1)));
- return sample & ((1 << bits) - 1);
-}
-
-static inline int find_scale_factor7(int64_t max_value, int bits)
+static void put_subframe_samples(DCAContext *c, int ss, int band, int ch)
{
- int i = 0, j = 128, q;
- max_value = ((max_value << 15) / lossy_quant[bits + 3]) >> (bits - 1);
- while (i < j) {
- q = (i + j) >> 1;
- if (max_value < scale_factor_quant7[q])
- j = q;
- else
- i = q + 1;
+ if (c->abits[band][ch] <= 7) {
+ int sum, i, j;
+ for (i = 0; i < 8; i += 4) {
+ sum = 0;
+ for (j = 3; j >= 0; j--) {
+ sum *= quant_levels[c->abits[band][ch]];
+ sum += c->quantized[ss * 8 + i + j][band][ch];
+ sum += (quant_levels[c->abits[band][ch]] - 1) / 2;
+ }
+ put_bits(&c->pb, bit_consumption[c->abits[band][ch]] / 4, sum);
+ }
+ } else {
+ int i;
+ for (i = 0; i < 8; i++) {
+ int bits = bit_consumption[c->abits[band][ch]] / 16;
+ int32_t mask = (1 << bits) - 1;
+ put_bits(&c->pb, bits, c->quantized[ss * 8 + i][band][ch] & mask);
+ }
}
- av_assert1(i < 128);
- return i;
-}
-
-static inline void put_sample7(DCAContext *c, int64_t sample, int bits,
- int scale_factor)
-{
- sample = (sample << 15) / ((int64_t) lossy_quant[bits + 3] * scale_factor_quant7[scale_factor]);
- put_bits(&c->pb, bits, quantize((int) sample, bits));
}
-static void put_subframe(DCAContext *c,
- int32_t subband_data[8 * SUBSUBFRAMES][MAX_CHANNELS][32],
- int subframe)
+static void put_subframe(DCAContext *c, int subframe)
{
- int i, sub, ss, ch, max_value;
- int32_t *lfe_data = c->lfe_data + 4 * SUBSUBFRAMES * subframe;
+ int i, band, ss, ch;
/* Subsubframes count */
put_bits(&c->pb, 2, SUBSUBFRAMES -1);
@@ -405,44 +858,27 @@ static void put_subframe(DCAContext *c,
put_bits(&c->pb, 3, 0);
/* Prediction mode: no ADPCM, in each channel and subband */
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ for (band = 0; band < DCA_SUBBANDS; band++)
put_bits(&c->pb, 1, 0);
/* Prediction VQ addres: not transmitted */
/* Bit allocation index */
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++)
- put_bits(&c->pb, 5, QUANTIZER_BITS+3);
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ for (band = 0; band < DCA_SUBBANDS; band++)
+ put_bits(&c->pb, 5, c->abits[band][ch]);
if (SUBSUBFRAMES > 1) {
/* Transition mode: none for each channel and subband */
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++)
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ for (band = 0; band < DCA_SUBBANDS; band++)
put_bits(&c->pb, 1, 0); /* codebook A4 */
}
- /* Determine scale_factor */
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++) {
- max_value = 0;
- for (i = 0; i < 8 * SUBSUBFRAMES; i++)
- max_value = FFMAX(max_value, FFABS(subband_data[i][ch][sub]));
- c->scale_factor[ch][sub] = find_scale_factor7(max_value, QUANTIZER_BITS);
- }
-
- if (c->lfe_channel) {
- max_value = 0;
- for (i = 0; i < 4 * SUBSUBFRAMES; i++)
- max_value = FFMAX(max_value, FFABS(lfe_data[i]));
- c->lfe_scale_factor = find_scale_factor7(max_value, LFE_BITS);
- }
-
- /* Scale factors: the same for each channel and subband,
- encoded according to Table D.1.2 */
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++)
- put_bits(&c->pb, 7, c->scale_factor[ch][sub]);
+ /* Scale factors */
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ for (band = 0; band < DCA_SUBBANDS; band++)
+ put_bits(&c->pb, 7, c->scale_factor[band][ch]);
/* Joint subband scale factor codebook select: not transmitted */
/* Scale factors for joint subband coding: not transmitted */
@@ -451,152 +887,83 @@ static void put_subframe(DCAContext *c,
/* Stde information CRC check word: not transmitted */
/* VQ encoded high frequency subbands: not transmitted */
- /* LFE data */
+ /* LFE data: 8 samples and scalefactor */
if (c->lfe_channel) {
- for (i = 0; i < 4 * SUBSUBFRAMES; i++)
- put_sample7(c, lfe_data[i], LFE_BITS, c->lfe_scale_factor);
+ for (i = 0; i < DCA_LFE_SAMPLES; i++)
+ put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
put_bits(&c->pb, 8, c->lfe_scale_factor);
}
/* Audio data (subsubframes) */
-
for (ss = 0; ss < SUBSUBFRAMES ; ss++)
- for (ch = 0; ch < c->prim_channels; ch++)
- for (sub = 0; sub < DCA_SUBBANDS; sub++)
- for (i = 0; i < 8; i++)
- put_sample7(c, subband_data[ss * 8 + i][ch][sub], QUANTIZER_BITS, c->scale_factor[ch][sub]);
+ for (ch = 0; ch < c->fullband_channels; ch++)
+ for (band = 0; band < DCA_SUBBANDS; band++)
+ put_subframe_samples(c, ss, band, ch);
/* DSYNC */
put_bits(&c->pb, 16, 0xffff);
}
-static void put_frame(DCAContext *c,
- int32_t subband_data[PCM_SAMPLES][MAX_CHANNELS][32],
- uint8_t *frame)
-{
- int i;
- init_put_bits(&c->pb, frame + DCA_HEADER_SIZE, DCA_MAX_FRAME_SIZE-DCA_HEADER_SIZE);
-
- put_primary_audio_header(c);
- for (i = 0; i < SUBFRAMES; i++)
- put_subframe(c, &subband_data[SUBSUBFRAMES * 8 * i], i);
-
- flush_put_bits(&c->pb);
- c->frame_size = (put_bits_count(&c->pb) >> 3) + DCA_HEADER_SIZE;
-
- init_put_bits(&c->pb, frame, DCA_HEADER_SIZE);
- put_frame_header(c);
- flush_put_bits(&c->pb);
-}
-
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
- int i, k, channel;
DCAContext *c = avctx->priv_data;
- const int16_t *samples;
- int ret, real_channel = 0;
+ const int32_t *samples;
+ int ret, i;
- if ((ret = ff_alloc_packet2(avctx, avpkt, DCA_MAX_FRAME_SIZE + DCA_HEADER_SIZE)) < 0)
+ if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size )) < 0)
return ret;
- samples = (const int16_t *)frame->data[0];
- for (i = 0; i < PCM_SAMPLES; i ++) { /* i is the decimated sample number */
- for (channel = 0; channel < c->prim_channels + 1; channel++) {
- real_channel = c->channel_order_tab[channel];
- if (real_channel >= 0) {
- /* Get 32 PCM samples */
- for (k = 0; k < 32; k++) { /* k is the sample number in a 32-sample block */
- c->pcm[k] = samples[avctx->channels * (32 * i + k) + channel] << 16;
- }
- /* Put subband samples into the proper place */
- qmf_decompose(c, c->pcm, &c->subband[i][real_channel][0], real_channel);
- }
- }
- }
+ samples = (const int32_t *)frame->data[0];
- if (c->lfe_channel) {
- for (i = 0; i < PCM_SAMPLES / 2; i++) {
- for (k = 0; k < LFE_INTERPOLATION; k++) /* k is the sample number in a 32-sample block */
- c->pcm[k] = samples[avctx->channels * (LFE_INTERPOLATION*i+k) + c->lfe_offset] << 16;
- c->lfe_data[i] = lfe_downsample(c, c->pcm);
- }
- }
+ subband_transform(c, samples);
+ if (c->lfe_channel)
+ lfe_downsample(c, samples);
- put_frame(c, c->subband, avpkt->data);
+ calc_masking(c, samples);
+ find_peaks(c);
+ assign_bits(c);
+ calc_scales(c);
+ quantize_all(c);
+ shift_history(c, samples);
- avpkt->size = c->frame_size;
- *got_packet_ptr = 1;
- return 0;
-}
-
-static int encode_init(AVCodecContext *avctx)
-{
- DCAContext *c = avctx->priv_data;
- int i;
- uint64_t layout = avctx->channel_layout;
-
- c->prim_channels = avctx->channels;
- c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
-
- if (!layout) {
- av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
- "encoder will guess the layout, but it "
- "might be incorrect.\n");
- layout = av_get_default_channel_layout(avctx->channels);
- }
- switch (layout) {
- case AV_CH_LAYOUT_STEREO: c->a_mode = 2; c->num_channel = 2; break;
- case AV_CH_LAYOUT_5POINT0: c->a_mode = 9; c->num_channel = 9; break;
- case AV_CH_LAYOUT_5POINT1: c->a_mode = 9; c->num_channel = 9; break;
- case AV_CH_LAYOUT_5POINT0_BACK: c->a_mode = 9; c->num_channel = 9; break;
- case AV_CH_LAYOUT_5POINT1_BACK: c->a_mode = 9; c->num_channel = 9; break;
- default:
- av_log(avctx, AV_LOG_ERROR,
- "Only stereo, 5.0, 5.1 channel layouts supported at the moment!\n");
- return AVERROR_PATCHWELCOME;
- }
-
- if (c->lfe_channel) {
- init_lfe_fir();
- c->prim_channels--;
- c->channel_order_tab = dca_channel_reorder_lfe[c->a_mode];
- c->lfe_state = LFE_PRESENT;
- c->lfe_offset = dca_lfe_index[c->a_mode];
- } else {
- c->channel_order_tab = dca_channel_reorder_nolfe[c->a_mode];
- c->lfe_state = LFE_MISSING;
- }
-
- for (i = 0; i < 16; i++) {
- if (avpriv_dca_sample_rates[i] && (avpriv_dca_sample_rates[i] == avctx->sample_rate))
- break;
- }
- if (i == 16) {
- av_log(avctx, AV_LOG_ERROR, "Sample rate %iHz not supported, only ", avctx->sample_rate);
- for (i = 0; i < 16; i++)
- av_log(avctx, AV_LOG_ERROR, "%d, ", avpriv_dca_sample_rates[i]);
- av_log(avctx, AV_LOG_ERROR, "supported.\n");
- return -1;
- }
- c->sample_rate_code = i;
+ init_put_bits(&c->pb, avpkt->data, avpkt->size);
+ put_frame_header(c);
+ put_primary_audio_header(c);
+ for (i = 0; i < SUBFRAMES; i++)
+ put_subframe(c, i);
- avctx->frame_size = 32 * PCM_SAMPLES;
+ flush_put_bits(&c->pb);
- if (!cos_table[127])
- qmf_init();
+ avpkt->pts = frame->pts;
+ avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
+ avpkt->size = c->frame_size + 1;
+ *got_packet_ptr = 1;
return 0;
}
+static const AVCodecDefault defaults[] = {
+ { "b", "1411200" },
+ { NULL },
+};
+
AVCodec ff_dca_encoder = {
- .name = "dca",
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_DTS,
- .priv_data_size = sizeof(DCAContext),
- .init = encode_init,
- .encode2 = encode_frame,
- .capabilities = CODEC_CAP_EXPERIMENTAL,
- .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
- AV_SAMPLE_FMT_NONE },
- .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
+ .name = "dca",
+ .type = AVMEDIA_TYPE_AUDIO,
+ .id = AV_CODEC_ID_DTS,
+ .priv_data_size = sizeof(DCAContext),
+ .init = encode_init,
+ .encode2 = encode_frame,
+ .capabilities = CODEC_CAP_EXPERIMENTAL,
+ .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
+ AV_SAMPLE_FMT_NONE },
+ .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
+ .supported_samplerates = sample_rates,
+ .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
+ AV_CH_LAYOUT_STEREO,
+ AV_CH_LAYOUT_2_2,
+ AV_CH_LAYOUT_5POINT0,
+ AV_CH_LAYOUT_5POINT1,
+ 0 },
+ .defaults = defaults,
};