summaryrefslogtreecommitdiff
path: root/libavcodec/dca_lbr.c
diff options
context:
space:
mode:
authorfoo86 <foobaz86@gmail.com>2016-05-01 18:43:00 +0300
committerJames Almer <jamrial@gmail.com>2016-05-10 20:33:28 -0300
commit6c44696b3d504eb87d60915919074da530cd379f (patch)
tree1ba0c685e5b0ba24327234ae0acaa6e1b5fdb083 /libavcodec/dca_lbr.c
parentfce75131229b63d4fbc784a3227be0843f867d55 (diff)
avcodec/dca: add DTS Express (LBR) decoder
Signed-off-by: James Almer <jamrial@gmail.com>
Diffstat (limited to 'libavcodec/dca_lbr.c')
-rw-r--r--libavcodec/dca_lbr.c1825
1 files changed, 1825 insertions, 0 deletions
diff --git a/libavcodec/dca_lbr.c b/libavcodec/dca_lbr.c
new file mode 100644
index 0000000000..595187c258
--- /dev/null
+++ b/libavcodec/dca_lbr.c
@@ -0,0 +1,1825 @@
+/*
+ * Copyright (C) 2016 foo86
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#define UNCHECKED_BITSTREAM_READER 1
+#define BITSTREAM_READER_LE
+
+#include "libavutil/channel_layout.h"
+
+#include "dcadec.h"
+#include "dcadata.h"
+#include "dcahuff.h"
+#include "dca_syncwords.h"
+#include "bytestream.h"
+
+#define AMP_MAX 56
+
+enum LBRHeader {
+ LBR_HEADER_SYNC_ONLY = 1,
+ LBR_HEADER_DECODER_INIT = 2
+};
+
+enum LBRFlags {
+ LBR_FLAG_24_BIT = 0x01,
+ LBR_FLAG_LFE_PRESENT = 0x02,
+ LBR_FLAG_BAND_LIMIT_2_3 = 0x04,
+ LBR_FLAG_BAND_LIMIT_1_2 = 0x08,
+ LBR_FLAG_BAND_LIMIT_1_3 = 0x0c,
+ LBR_FLAG_BAND_LIMIT_1_4 = 0x10,
+ LBR_FLAG_BAND_LIMIT_1_8 = 0x18,
+ LBR_FLAG_BAND_LIMIT_NONE = 0x14,
+ LBR_FLAG_BAND_LIMIT_MASK = 0x1c,
+ LBR_FLAG_DMIX_STEREO = 0x20,
+ LBR_FLAG_DMIX_MULTI_CH = 0x40
+};
+
+enum LBRChunkTypes {
+ LBR_CHUNK_NULL = 0x00,
+ LBR_CHUNK_PAD = 0x01,
+ LBR_CHUNK_FRAME = 0x04,
+ LBR_CHUNK_FRAME_NO_CSUM = 0x06,
+ LBR_CHUNK_LFE = 0x0a,
+ LBR_CHUNK_ECS = 0x0b,
+ LBR_CHUNK_RESERVED_1 = 0x0c,
+ LBR_CHUNK_RESERVED_2 = 0x0d,
+ LBR_CHUNK_SCF = 0x0e,
+ LBR_CHUNK_TONAL = 0x10,
+ LBR_CHUNK_TONAL_GRP_1 = 0x11,
+ LBR_CHUNK_TONAL_GRP_2 = 0x12,
+ LBR_CHUNK_TONAL_GRP_3 = 0x13,
+ LBR_CHUNK_TONAL_GRP_4 = 0x14,
+ LBR_CHUNK_TONAL_GRP_5 = 0x15,
+ LBR_CHUNK_TONAL_SCF = 0x16,
+ LBR_CHUNK_TONAL_SCF_GRP_1 = 0x17,
+ LBR_CHUNK_TONAL_SCF_GRP_2 = 0x18,
+ LBR_CHUNK_TONAL_SCF_GRP_3 = 0x19,
+ LBR_CHUNK_TONAL_SCF_GRP_4 = 0x1a,
+ LBR_CHUNK_TONAL_SCF_GRP_5 = 0x1b,
+ LBR_CHUNK_RES_GRID_LR = 0x30,
+ LBR_CHUNK_RES_GRID_LR_LAST = 0x3f,
+ LBR_CHUNK_RES_GRID_HR = 0x40,
+ LBR_CHUNK_RES_GRID_HR_LAST = 0x4f,
+ LBR_CHUNK_RES_TS_1 = 0x50,
+ LBR_CHUNK_RES_TS_1_LAST = 0x5f,
+ LBR_CHUNK_RES_TS_2 = 0x60,
+ LBR_CHUNK_RES_TS_2_LAST = 0x6f,
+ LBR_CHUNK_EXTENSION = 0x7f
+};
+
+typedef struct LBRChunk {
+ int id, len;
+ const uint8_t *data;
+} LBRChunk;
+
+static const int8_t channel_reorder_nolfe[7][5] = {
+ { 0, -1, -1, -1, -1 }, // C
+ { 0, 1, -1, -1, -1 }, // LR
+ { 0, 1, 2, -1, -1 }, // LR C
+ { 0, 1, -1, -1, -1 }, // LsRs
+ { 1, 2, 0, -1, -1 }, // LsRs C
+ { 0, 1, 2, 3, -1 }, // LR LsRs
+ { 0, 1, 3, 4, 2 }, // LR LsRs C
+};
+
+static const int8_t channel_reorder_lfe[7][5] = {
+ { 0, -1, -1, -1, -1 }, // C
+ { 0, 1, -1, -1, -1 }, // LR
+ { 0, 1, 2, -1, -1 }, // LR C
+ { 1, 2, -1, -1, -1 }, // LsRs
+ { 2, 3, 0, -1, -1 }, // LsRs C
+ { 0, 1, 3, 4, -1 }, // LR LsRs
+ { 0, 1, 4, 5, 2 }, // LR LsRs C
+};
+
+static const uint8_t lfe_index[7] = {
+ 1, 2, 3, 0, 1, 2, 3
+};
+
+static const uint8_t channel_counts[7] = {
+ 1, 2, 3, 2, 3, 4, 5
+};
+
+static const uint16_t channel_layouts[7] = {
+ AV_CH_LAYOUT_MONO,
+ AV_CH_LAYOUT_STEREO,
+ AV_CH_LAYOUT_SURROUND,
+ AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
+ AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
+ AV_CH_LAYOUT_2_2,
+ AV_CH_LAYOUT_5POINT0
+};
+
+static float cos_tab[256];
+static float lpc_tab[16];
+
+static av_cold void init_tables(void)
+{
+ static int initialized;
+ int i;
+
+ if (initialized)
+ return;
+
+ for (i = 0; i < 256; i++)
+ cos_tab[i] = cos(M_PI * i / 128);
+
+ for (i = 0; i < 16; i++)
+ lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15)));
+
+ initialized = 1;
+}
+
+static int parse_lfe_24(DCALbrDecoder *s)
+{
+ int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1;
+ int i, ps, si, code, step_i;
+ float step, value, delta;
+
+ ps = get_bits(&s->gb, 24);
+ si = ps >> 23;
+
+ value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff);
+
+ step_i = get_bits(&s->gb, 8);
+ if (step_i > step_max) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
+ return -1;
+ }
+
+ step = ff_dca_lfe_step_size_24[step_i];
+
+ for (i = 0; i < 64; i++) {
+ code = get_bits(&s->gb, 6);
+
+ delta = step * 0.03125f;
+ if (code & 16)
+ delta += step;
+ if (code & 8)
+ delta += step * 0.5f;
+ if (code & 4)
+ delta += step * 0.25f;
+ if (code & 2)
+ delta += step * 0.125f;
+ if (code & 1)
+ delta += step * 0.0625f;
+
+ if (code & 32) {
+ value -= delta;
+ if (value < -3.0f)
+ value = -3.0f;
+ } else {
+ value += delta;
+ if (value > 3.0f)
+ value = 3.0f;
+ }
+
+ step_i += ff_dca_lfe_delta_index_24[code & 31];
+ step_i = av_clip(step_i, 0, step_max);
+
+ step = ff_dca_lfe_step_size_24[step_i];
+ s->lfe_data[i] = value * s->lfe_scale;
+ }
+
+ return 0;
+}
+
+static int parse_lfe_16(DCALbrDecoder *s)
+{
+ int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1;
+ int i, ps, si, code, step_i;
+ float step, value, delta;
+
+ ps = get_bits(&s->gb, 16);
+ si = ps >> 15;
+
+ value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff);
+
+ step_i = get_bits(&s->gb, 8);
+ if (step_i > step_max) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
+ return -1;
+ }
+
+ step = ff_dca_lfe_step_size_16[step_i];
+
+ for (i = 0; i < 64; i++) {
+ code = get_bits(&s->gb, 4);
+
+ delta = step * 0.125f;
+ if (code & 4)
+ delta += step;
+ if (code & 2)
+ delta += step * 0.5f;
+ if (code & 1)
+ delta += step * 0.25f;
+
+ if (code & 8) {
+ value -= delta;
+ if (value < -3.0f)
+ value = -3.0f;
+ } else {
+ value += delta;
+ if (value > 3.0f)
+ value = 3.0f;
+ }
+
+ step_i += ff_dca_lfe_delta_index_16[code & 7];
+ step_i = av_clip(step_i, 0, step_max);
+
+ step = ff_dca_lfe_step_size_16[step_i];
+ s->lfe_data[i] = value * s->lfe_scale;
+ }
+
+ return 0;
+}
+
+static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk)
+{
+ if (!(s->flags & LBR_FLAG_LFE_PRESENT))
+ return 0;
+
+ if (!chunk->len)
+ return 0;
+
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+
+ // Determine bit depth from chunk size
+ if (chunk->len >= 52)
+ return parse_lfe_24(s);
+ if (chunk->len >= 35)
+ return parse_lfe_16(s);
+
+ av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n");
+ return -1;
+}
+
+static inline int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth)
+{
+ int v = get_vlc2(s, vlc->table, vlc->bits, max_depth);
+ if (v > 0)
+ return v - 1;
+ // Rare value
+ return get_bits(s, get_bits(s, 3) + 1);
+}
+
+static int parse_tonal(DCALbrDecoder *s, int group)
+{
+ unsigned int amp[DCA_LBR_CHANNELS_TOTAL];
+ unsigned int phs[DCA_LBR_CHANNELS_TOTAL];
+ unsigned int diff, main_amp, shift;
+ int sf, sf_idx, ch, main_ch, freq;
+ int ch_nbits = av_ceil_log2(s->nchannels_total);
+
+ // Parse subframes for this group
+ for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) {
+ sf_idx = ((s->framenum << group) + sf) & 31;
+ s->tonal_bounds[group][sf_idx][0] = s->ntones;
+
+ // Parse tones for this subframe
+ for (freq = 1;; freq++) {
+ if (get_bits_left(&s->gb) < 1) {
+ av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n");
+ return -1;
+ }
+
+ diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], 2);
+ if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n");
+ return -1;
+ }
+
+ diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff];
+ if (diff <= 1)
+ break; // End of subframe
+
+ freq += diff - 2;
+ if (freq >> (5 - group) > s->nsubbands * 4 - 5) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n");
+ return -1;
+ }
+
+ // Main channel
+ main_ch = get_bitsz(&s->gb, ch_nbits);
+ main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, 2)
+ + s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]]
+ + s->limited_range - 2;
+ amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0;
+ phs[main_ch] = get_bits(&s->gb, 3);
+
+ // Secondary channels
+ for (ch = 0; ch < s->nchannels_total; ch++) {
+ if (ch == main_ch)
+ continue;
+ if (get_bits1(&s->gb)) {
+ amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, 1);
+ phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph, 1);
+ } else {
+ amp[ch] = 0;
+ phs[ch] = 0;
+ }
+ }
+
+ if (amp[main_ch]) {
+ // Allocate new tone
+ DCALbrTone *t = &s->tones[s->ntones];
+ s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1);
+
+ t->x_freq = freq >> (5 - group);
+ t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group;
+ t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4;
+
+ shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)]
+ - ((t->ph_rot << (5 - group)) - t->ph_rot);
+
+ for (ch = 0; ch < s->nchannels; ch++) {
+ t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0;
+ t->phs[ch] = 128 - phs[ch] * 32 + shift;
+ }
+ }
+ }
+
+ s->tonal_bounds[group][sf_idx][1] = s->ntones;
+ }
+
+ return 0;
+}
+
+static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk)
+{
+ int sb, group;
+
+ if (!chunk->len)
+ return 0;
+
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+
+ // Scale factors
+ if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) {
+ if (get_bits_left(&s->gb) < 36) {
+ av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n");
+ return -1;
+ }
+ for (sb = 0; sb < 6; sb++)
+ s->tonal_scf[sb] = get_bits(&s->gb, 6);
+ }
+
+ // Tonal groups
+ if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF)
+ for (group = 0; group < 5; group++)
+ if (parse_tonal(s, group) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk)
+{
+ if (!chunk->len)
+ return 0;
+
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+
+ return parse_tonal(s, chunk->id);
+}
+
+/**
+ * Check point to ensure that enough bits are left. Aborts decoding
+ * by skipping to the end of chunk otherwise.
+ */
+static int ensure_bits(GetBitContext *s, int n)
+{
+ int left = get_bits_left(s);
+ if (left < 0)
+ return -1;
+ if (left < n) {
+ skip_bits_long(s, left);
+ return 1;
+ }
+ return 0;
+}
+
+static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf)
+{
+ int i, sf, prev, next, dist;
+
+ // Truncated scale factors remain zero
+ if (ensure_bits(&s->gb, 20))
+ return 0;
+
+ // Initial scale factor
+ prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, 2);
+
+ for (sf = 0; sf < 7; sf += dist) {
+ scf[sf] = prev; // Store previous value
+
+ if (ensure_bits(&s->gb, 20))
+ return 0;
+
+ // Interpolation distance
+ dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, 1) + 1;
+ if (dist > 7 - sf) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n");
+ return -1;
+ }
+
+ if (ensure_bits(&s->gb, 20))
+ return 0;
+
+ // Final interpolation point
+ next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, 2);
+
+ if (next & 1)
+ next = prev + ((next + 1) >> 1);
+ else
+ next = prev - ( next >> 1);
+
+ // Interpolate
+ switch (dist) {
+ case 2:
+ if (next > prev)
+ scf[sf + 1] = prev + ((next - prev) >> 1);
+ else
+ scf[sf + 1] = prev - ((prev - next) >> 1);
+ break;
+
+ case 4:
+ if (next > prev) {
+ scf[sf + 1] = prev + ( (next - prev) >> 2);
+ scf[sf + 2] = prev + ( (next - prev) >> 1);
+ scf[sf + 3] = prev + (((next - prev) * 3) >> 2);
+ } else {
+ scf[sf + 1] = prev - ( (prev - next) >> 2);
+ scf[sf + 2] = prev - ( (prev - next) >> 1);
+ scf[sf + 3] = prev - (((prev - next) * 3) >> 2);
+ }
+ break;
+
+ default:
+ for (i = 1; i < dist; i++)
+ scf[sf + i] = prev + (next - prev) * i / dist;
+ break;
+ }
+
+ prev = next;
+ }
+
+ scf[sf] = next; // Store final value
+
+ return 0;
+}
+
+static int parse_st_code(GetBitContext *s, int min_v)
+{
+ unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, 2) + min_v;
+
+ if (v & 1)
+ v = 16 + (v >> 1);
+ else
+ v = 16 - (v >> 1);
+
+ if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff))
+ v = 16;
+ return v;
+}
+
+static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
+{
+ int ch, sb, sf, nsubbands;
+
+ if (!chunk->len)
+ return 0;
+
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+
+ // Scale factors
+ nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
+ for (sb = 2; sb < nsubbands; sb++) {
+ if (parse_scale_factors(s, s->grid_1_scf[ch1][sb]) < 0)
+ return -1;
+ if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband
+ && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
+ return -1;
+ }
+
+ if (get_bits_left(&s->gb) < 1)
+ return 0; // Should not happen, but a sample exists that proves otherwise
+
+ // Average values for third grid
+ for (sb = 0; sb < s->nsubbands - 4; sb++) {
+ s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
+ if (ch1 != ch2) {
+ if (sb + 4 < s->min_mono_subband)
+ s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
+ else
+ s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb];
+ }
+ }
+
+ if (get_bits_left(&s->gb) < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n");
+ return -1;
+ }
+
+ // Stereo image for partial mono mode
+ if (ch1 != ch2) {
+ int min_v[2];
+
+ if (ensure_bits(&s->gb, 8))
+ return 0;
+
+ min_v[0] = get_bits(&s->gb, 4);
+ min_v[1] = get_bits(&s->gb, 4);
+
+ nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4;
+ for (sb = 0; sb < nsubbands; sb++)
+ for (ch = ch1; ch <= ch2; ch++)
+ for (sf = 1; sf <= 4; sf++)
+ s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]);
+
+ if (get_bits_left(&s->gb) >= 0)
+ s->part_stereo_pres |= 1 << ch1;
+ }
+
+ // Low resolution spatial information is not decoded
+
+ return 0;
+}
+
+static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2)
+{
+ int sb, nsubbands;
+
+ // Scale factors
+ nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
+ for (sb = 2; sb < nsubbands; sb++) {
+ if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband
+ && parse_scale_factors(s, s->grid_1_scf[ch2][sb]) < 0)
+ return -1;
+ }
+
+ // Average values for third grid
+ for (sb = 0; sb < s->nsubbands - 4; sb++) {
+ if (sb + 4 >= s->min_mono_subband) {
+ if (ensure_bits(&s->gb, 20))
+ return 0;
+ s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
+ }
+ }
+
+ return 0;
+}
+
+static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag)
+{
+ int i, ch;
+
+ for (ch = ch1; ch <= ch2; ch++) {
+ if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag)
+ continue;
+
+ if (s->grid_3_pres[ch] & (1U << sb))
+ continue; // Already parsed
+
+ for (i = 0; i < 8; i++) {
+ if (ensure_bits(&s->gb, 20))
+ return;
+ s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, 2) - 16;
+ }
+
+ // Flag scale factors for this subband parsed
+ s->grid_3_pres[ch] |= 1U << sb;
+ }
+}
+
+static float lbr_rand(DCALbrDecoder *s, int sb)
+{
+ s->lbr_rand = 1103515245U * s->lbr_rand + 12345U;
+ return s->lbr_rand * s->sb_scf[sb];
+}
+
+/**
+ * Parse time samples for one subband, filling truncated samples with randomness
+ */
+static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag)
+{
+ float *samples = s->time_samples[ch][sb];
+ int i, j, code, nblocks, coding_method;
+
+ if (ensure_bits(&s->gb, 20))
+ return; // Too few bits left
+
+ coding_method = get_bits1(&s->gb);
+
+ switch (quant_level) {
+ case 1:
+ nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8);
+ for (i = 0; i < nblocks; i++, samples += 8) {
+ code = get_bits(&s->gb, 8);
+ for (j = 0; j < 8; j++)
+ samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1];
+ }
+ i = nblocks * 8;
+ break;
+
+ case 2:
+ if (coding_method) {
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) {
+ if (get_bits1(&s->gb))
+ samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)];
+ else
+ samples[i] = 0;
+ }
+ } else {
+ nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5);
+ for (i = 0; i < nblocks; i++, samples += 5) {
+ code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)];
+ for (j = 0; j < 5; j++)
+ samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3];
+ }
+ i = nblocks * 5;
+ }
+ break;
+
+ case 3:
+ nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3);
+ for (i = 0; i < nblocks; i++, samples += 3) {
+ code = get_bits(&s->gb, 7);
+ for (j = 0; j < 3; j++)
+ samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]];
+ }
+ i = nblocks * 3;
+ break;
+
+ case 4:
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++)
+ samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)];
+ break;
+
+ case 5:
+ nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES);
+ for (i = 0; i < nblocks; i++)
+ samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)];
+ break;
+
+ default:
+ av_assert0(0);
+ }
+
+ if (flag && get_bits_left(&s->gb) < 20)
+ return; // Skip incomplete mono subband
+
+ for (; i < DCA_LBR_TIME_SAMPLES; i++)
+ s->time_samples[ch][sb][i] = lbr_rand(s, sb);
+
+ s->ch_pres[ch] |= 1U << sb;
+}
+
+static int parse_ts(DCALbrDecoder *s, int ch1, int ch2,
+ int start_sb, int end_sb, int flag)
+{
+ int sb, sb_g3, sb_reorder, quant_level;
+
+ for (sb = start_sb; sb < end_sb; sb++) {
+ // Subband number before reordering
+ if (sb < 6) {
+ sb_reorder = sb;
+ } else if (flag && sb < s->max_mono_subband) {
+ sb_reorder = s->sb_indices[sb];
+ } else {
+ if (ensure_bits(&s->gb, 28))
+ break;
+ sb_reorder = get_bits(&s->gb, s->limited_range + 3);
+ if (sb_reorder < 6)
+ sb_reorder = 6;
+ s->sb_indices[sb] = sb_reorder;
+ }
+ if (sb_reorder >= s->nsubbands)
+ return -1;
+
+ // Third grid scale factors
+ if (sb == 12) {
+ for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++)
+ parse_grid_3(s, ch1, ch2, sb_g3, flag);
+ } else if (sb < 12 && sb_reorder >= 4) {
+ parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag);
+ }
+
+ // Secondary channel flags
+ if (ch1 != ch2) {
+ if (ensure_bits(&s->gb, 20))
+ break;
+ if (!flag || sb_reorder >= s->max_mono_subband)
+ s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
+ if (flag && sb_reorder >= s->min_mono_subband)
+ s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
+ }
+
+ quant_level = s->quant_levels[ch1 / 2][sb];
+ if (!quant_level)
+ return -1;
+
+ // Time samples for one or both channels
+ if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) {
+ if (!flag)
+ parse_ch(s, ch1, sb_reorder, quant_level, 0);
+ else if (ch1 != ch2)
+ parse_ch(s, ch2, sb_reorder, quant_level, 1);
+ } else {
+ parse_ch(s, ch1, sb_reorder, quant_level, 0);
+ if (ch1 != ch2)
+ parse_ch(s, ch2, sb_reorder, quant_level, 0);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * Convert from reflection coefficients to direct form coefficients
+ */
+static void convert_lpc(float *coeff, const int *codes)
+{
+ int i, j;
+
+ for (i = 0; i < 8; i++) {
+ float rc = lpc_tab[codes[i]];
+ for (j = 0; j < (i + 1) / 2; j++) {
+ float tmp1 = coeff[ j ];
+ float tmp2 = coeff[i - j - 1];
+ coeff[ j ] = tmp1 + rc * tmp2;
+ coeff[i - j - 1] = tmp2 + rc * tmp1;
+ }
+ coeff[i] = rc;
+ }
+}
+
+static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb)
+{
+ int f = s->framenum & 1;
+ int i, sb, ch, codes[16];
+
+ // First two subbands have two sets of coefficients, third subband has one
+ for (sb = start_sb; sb < end_sb; sb++) {
+ int ncodes = 8 * (1 + (sb < 2));
+ for (ch = ch1; ch <= ch2; ch++) {
+ if (ensure_bits(&s->gb, 4 * ncodes))
+ return 0;
+ for (i = 0; i < ncodes; i++)
+ codes[i] = get_bits(&s->gb, 4);
+ for (i = 0; i < ncodes / 8; i++)
+ convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]);
+ }
+ }
+
+ return 0;
+}
+
+static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
+{
+ int quant_levels[DCA_LBR_SUBBANDS];
+ int sb, ch, ol, st, max_sb, profile;
+
+ if (!chunk->len)
+ return 0;
+
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+
+ // Quantizer profile
+ profile = get_bits(&s->gb, 8);
+ // Overall level
+ ol = (profile >> 3) & 7;
+ // Steepness
+ st = profile >> 6;
+ // Max energy subband
+ max_sb = profile & 7;
+
+ // Calculate quantization levels
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ int f = sb * s->limited_rate / s->nsubbands;
+ int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol;
+ if (a <= 95)
+ quant_levels[sb] = 1;
+ else if (a <= 140)
+ quant_levels[sb] = 2;
+ else if (a <= 180)
+ quant_levels[sb] = 3;
+ else if (a <= 230)
+ quant_levels[sb] = 4;
+ else
+ quant_levels[sb] = 5;
+ }
+
+ // Reorder quantization levels for lower subbands
+ for (sb = 0; sb < 8; sb++)
+ s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]];
+ for (; sb < s->nsubbands; sb++)
+ s->quant_levels[ch1 / 2][sb] = quant_levels[sb];
+
+ // LPC for the first two subbands
+ if (parse_lpc(s, ch1, ch2, 0, 2) < 0)
+ return -1;
+
+ // Time-samples for the first two subbands of main channel
+ if (parse_ts(s, ch1, ch2, 0, 2, 0) < 0)
+ return -1;
+
+ // First two bands of the first grid
+ for (sb = 0; sb < 2; sb++)
+ for (ch = ch1; ch <= ch2; ch++)
+ if (parse_scale_factors(s, s->grid_1_scf[ch][sb]) < 0)
+ return -1;
+
+ return 0;
+}
+
+static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2,
+ int start_sb, int end_sb, int flag)
+{
+ int i, j, sb, ch, nsubbands;
+
+ nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1;
+ if (end_sb > nsubbands)
+ end_sb = nsubbands;
+
+ for (sb = start_sb; sb < end_sb; sb++) {
+ for (ch = ch1; ch <= ch2; ch++) {
+ uint8_t *g2_scf = s->grid_2_scf[ch][sb];
+
+ if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) {
+ if (!flag)
+ memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64);
+ continue;
+ }
+
+ // Scale factors in groups of 8
+ for (i = 0; i < 8; i++, g2_scf += 8) {
+ if (get_bits_left(&s->gb) < 1) {
+ memset(g2_scf, 0, 64 - i * 8);
+ break;
+ }
+ // Bit indicating if whole group has zero values
+ if (get_bits1(&s->gb)) {
+ for (j = 0; j < 8; j++) {
+ if (ensure_bits(&s->gb, 20))
+ break;
+ g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, 2);
+ }
+ } else {
+ memset(g2_scf, 0, 8);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
+{
+ if (!chunk->len)
+ return 0;
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+ if (parse_lpc(s, ch1, ch2, 2, 3) < 0)
+ return -1;
+ if (parse_ts(s, ch1, ch2, 2, 4, 0) < 0)
+ return -1;
+ if (parse_grid_2(s, ch1, ch2, 0, 1, 0) < 0)
+ return -1;
+ if (parse_ts(s, ch1, ch2, 4, 6, 0) < 0)
+ return -1;
+ return 0;
+}
+
+static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
+{
+ if (!chunk->len)
+ return 0;
+ if (init_get_bits8(&s->gb, chunk->data, chunk->len) < 0)
+ return -1;
+ if (parse_grid_2(s, ch1, ch2, 1, 3, 0) < 0)
+ return -1;
+ if (parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0) < 0)
+ return -1;
+ if (ch1 != ch2) {
+ if (parse_grid_1_sec_ch(s, ch2) < 0)
+ return -1;
+ if (parse_grid_2(s, ch1, ch2, 0, 3, 1) < 0)
+ return -1;
+ }
+ if (parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1) < 0)
+ return -1;
+ return 0;
+}
+
+static int init_sample_rate(DCALbrDecoder *s)
+{
+ double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range));
+ int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total;
+
+ ff_mdct_end(&s->imdct);
+
+ if (ff_mdct_init(&s->imdct, s->freq_range + 6, 1, scale) < 0)
+ return -1;
+
+ for (i = 0; i < 32 << s->freq_range; i++)
+ s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)];
+
+ if (br_per_ch < 14000)
+ scale = 0.85;
+ else if (br_per_ch < 32000)
+ scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85;
+ else
+ scale = 1.0;
+
+ scale *= 1.0 / INT_MAX;
+
+ for (i = 0; i < s->nsubbands; i++) {
+ if (i < 2)
+ s->sb_scf[i] = 0; // The first two subbands are always zero
+ else if (i < 5)
+ s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale;
+ else
+ s->sb_scf[i] = 0.785 * scale;
+ }
+
+ s->lfe_scale = (16 << s->freq_range) * 0.0000078265894;
+
+ return 0;
+}
+
+static int alloc_sample_buffer(DCALbrDecoder *s)
+{
+ // Reserve space for history and padding
+ int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2;
+ int nsamples = nchsamples * s->nchannels * s->nsubbands;
+ int ch, sb;
+ float *ptr;
+
+ // Reallocate time sample buffer
+ av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float));
+ if (!s->ts_buffer)
+ return -1;
+
+ ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY;
+ for (ch = 0; ch < s->nchannels; ch++) {
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ s->time_samples[ch][sb] = ptr;
+ ptr += nchsamples;
+ }
+ }
+
+ return 0;
+}
+
+static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb)
+{
+ int old_rate = s->sample_rate;
+ int old_band_limit = s->band_limit;
+ int old_nchannels = s->nchannels;
+ int version, bit_rate_hi;
+ unsigned int code;
+
+ // Sample rate of LBR audio
+ code = bytestream2_get_byte(gb);
+ if (code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n");
+ return AVERROR_INVALIDDATA;
+ }
+ s->sample_rate = ff_dca_sampling_freqs[code];
+ if (s->sample_rate > 48000) {
+ avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // LBR speaker mask
+ s->ch_mask = bytestream2_get_le16(gb);
+ if (!(s->ch_mask & 0x7)) {
+ avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
+ return AVERROR_PATCHWELCOME;
+ }
+ if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) {
+ avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
+ s->warned |= 1;
+ }
+
+ // LBR bitstream version
+ version = bytestream2_get_le16(gb);
+ if ((version & 0xff00) != 0x0800) {
+ avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Flags for LBR decoder initialization
+ s->flags = bytestream2_get_byte(gb);
+ if (s->flags & LBR_FLAG_DMIX_MULTI_CH) {
+ avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix");
+ return AVERROR_PATCHWELCOME;
+ }
+ if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) {
+ if (!(s->warned & 2)) {
+ avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate);
+ s->warned |= 2;
+ }
+ s->flags &= ~LBR_FLAG_LFE_PRESENT;
+ }
+
+ // Most significant bit rate nibbles
+ bit_rate_hi = bytestream2_get_byte(gb);
+
+ // Least significant original bit rate word
+ s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16);
+
+ // Least significant scaled bit rate word
+ s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12);
+
+ // Setup number of fullband channels
+ s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1);
+ s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS);
+
+ // Setup band limit
+ switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) {
+ case LBR_FLAG_BAND_LIMIT_NONE:
+ s->band_limit = 0;
+ break;
+ case LBR_FLAG_BAND_LIMIT_1_2:
+ s->band_limit = 1;
+ break;
+ case LBR_FLAG_BAND_LIMIT_1_4:
+ s->band_limit = 2;
+ break;
+ default:
+ avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK);
+ return AVERROR_PATCHWELCOME;
+ }
+
+ // Setup frequency range
+ if (s->sample_rate < 14000)
+ s->freq_range = 0;
+ else if (s->sample_rate < 28000)
+ s->freq_range = 1;
+ else
+ s->freq_range = 2;
+
+ // Setup resolution profile
+ if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2))
+ s->res_profile = 2;
+ else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2))
+ s->res_profile = 1;
+ else
+ s->res_profile = 0;
+
+ // Setup limited sample rate, number of subbands, etc
+ s->limited_rate = s->sample_rate >> s->band_limit;
+ s->limited_range = s->freq_range - s->band_limit;
+ if (s->limited_range < 0) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ s->nsubbands = 8 << s->limited_range;
+
+ s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2);
+ if (s->g3_avg_only_start_sb > s->nsubbands)
+ s->g3_avg_only_start_sb = s->nsubbands;
+
+ s->min_mono_subband = s->nsubbands * 2000 / (s->limited_rate / 2);
+ if (s->min_mono_subband > s->nsubbands)
+ s->min_mono_subband = s->nsubbands;
+
+ s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2);
+ if (s->max_mono_subband > s->nsubbands)
+ s->max_mono_subband = s->nsubbands;
+
+ // Handle change of sample rate
+ if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0)
+ return AVERROR(ENOMEM);
+
+ // Setup stereo downmix
+ if (s->flags & LBR_FLAG_DMIX_STEREO) {
+ DCAContext *dca = s->avctx->priv_data;
+
+ if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // This decoder doesn't support ECS chunk
+ if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) {
+ avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix");
+ s->warned |= 4;
+ }
+
+ // Account for extra downmixed channel pair
+ s->nchannels_total += 2;
+ s->nchannels = 2;
+ s->ch_mask = DCA_SPEAKER_PAIR_LR;
+ s->flags &= ~LBR_FLAG_LFE_PRESENT;
+ }
+
+ // Handle change of sample rate or number of channels
+ if (old_rate != s->sample_rate
+ || old_band_limit != s->band_limit
+ || old_nchannels != s->nchannels) {
+ if (alloc_sample_buffer(s) < 0)
+ return AVERROR(ENOMEM);
+ ff_dca_lbr_flush(s);
+ }
+
+ return 0;
+}
+
+int ff_dca_lbr_parse(DCALbrDecoder *s, uint8_t *data, DCAExssAsset *asset)
+{
+ struct {
+ LBRChunk lfe;
+ LBRChunk tonal;
+ LBRChunk tonal_grp[5];
+ LBRChunk grid1[DCA_LBR_CHANNELS / 2];
+ LBRChunk hr_grid[DCA_LBR_CHANNELS / 2];
+ LBRChunk ts1[DCA_LBR_CHANNELS / 2];
+ LBRChunk ts2[DCA_LBR_CHANNELS / 2];
+ } chunk = { };
+
+ GetByteContext gb;
+
+ int i, ch, sb, sf, ret, group, chunk_id, chunk_len;
+
+ bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size);
+
+ // LBR sync word
+ if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) {
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // LBR header type
+ switch (bytestream2_get_byte(&gb)) {
+ case LBR_HEADER_SYNC_ONLY:
+ if (!s->sample_rate) {
+ av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n");
+ return AVERROR_INVALIDDATA;
+ }
+ break;
+ case LBR_HEADER_DECODER_INIT:
+ if ((ret = parse_decoder_init(s, &gb)) < 0) {
+ s->sample_rate = 0;
+ return ret;
+ }
+ break;
+ default:
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // LBR frame chunk header
+ chunk_id = bytestream2_get_byte(&gb);
+ chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
+
+ if (chunk_len > bytestream2_get_bytes_left(&gb)) {
+ chunk_len = bytestream2_get_bytes_left(&gb);
+ av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n");
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return AVERROR_INVALIDDATA;
+ }
+
+ bytestream2_init(&gb, gb.buffer, chunk_len);
+
+ switch (chunk_id & 0x7f) {
+ case LBR_CHUNK_FRAME:
+ if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) {
+ int checksum = bytestream2_get_be16(&gb);
+ uint16_t res = chunk_id;
+ res += (chunk_len >> 8) & 0xff;
+ res += chunk_len & 0xff;
+ for (i = 0; i < chunk_len - 2; i++)
+ res += gb.buffer[i];
+ if (checksum != res) {
+ av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n");
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return AVERROR_INVALIDDATA;
+ }
+ } else {
+ bytestream2_skip(&gb, 2);
+ }
+ break;
+ case LBR_CHUNK_FRAME_NO_CSUM:
+ break;
+ default:
+ av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n");
+ return AVERROR_INVALIDDATA;
+ }
+
+ // Clear current frame
+ memset(s->quant_levels, 0, sizeof(s->quant_levels));
+ memset(s->sb_indices, 0xff, sizeof(s->sb_indices));
+ memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms));
+ memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms));
+ memset(s->ch_pres, 0, sizeof(s->ch_pres));
+ memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf));
+ memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf));
+ memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg));
+ memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf));
+ memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres));
+ memset(s->tonal_scf, 0, sizeof(s->tonal_scf));
+ memset(s->lfe_data, 0, sizeof(s->lfe_data));
+ s->part_stereo_pres = 0;
+ s->framenum = (s->framenum + 1) & 31;
+
+ for (ch = 0; ch < s->nchannels; ch++) {
+ for (sb = 0; sb < s->nsubbands / 4; sb++) {
+ s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4];
+ s->part_stereo[ch][sb][4] = 16;
+ }
+ }
+
+ memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0]));
+
+ for (group = 0; group < 5; group++) {
+ for (sf = 0; sf < 1 << group; sf++) {
+ int sf_idx = ((s->framenum << group) + sf) & 31;
+ s->tonal_bounds[group][sf_idx][0] =
+ s->tonal_bounds[group][sf_idx][1] = s->ntones;
+ }
+ }
+
+ // Parse chunk headers
+ while (bytestream2_get_bytes_left(&gb) > 0) {
+ chunk_id = bytestream2_get_byte(&gb);
+ chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
+ chunk_id &= 0x7f;
+
+ if (chunk_len > bytestream2_get_bytes_left(&gb)) {
+ chunk_len = bytestream2_get_bytes_left(&gb);
+ av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id);
+ if (s->avctx->err_recognition & AV_EF_EXPLODE)
+ return AVERROR_INVALIDDATA;
+ }
+
+ switch (chunk_id) {
+ case LBR_CHUNK_LFE:
+ chunk.lfe.len = chunk_len;
+ chunk.lfe.data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_SCF:
+ case LBR_CHUNK_TONAL:
+ case LBR_CHUNK_TONAL_SCF:
+ chunk.tonal.id = chunk_id;
+ chunk.tonal.len = chunk_len;
+ chunk.tonal.data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_TONAL_GRP_1:
+ case LBR_CHUNK_TONAL_GRP_2:
+ case LBR_CHUNK_TONAL_GRP_3:
+ case LBR_CHUNK_TONAL_GRP_4:
+ case LBR_CHUNK_TONAL_GRP_5:
+ i = LBR_CHUNK_TONAL_GRP_5 - chunk_id;
+ chunk.tonal_grp[i].id = i;
+ chunk.tonal_grp[i].len = chunk_len;
+ chunk.tonal_grp[i].data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_TONAL_SCF_GRP_1:
+ case LBR_CHUNK_TONAL_SCF_GRP_2:
+ case LBR_CHUNK_TONAL_SCF_GRP_3:
+ case LBR_CHUNK_TONAL_SCF_GRP_4:
+ case LBR_CHUNK_TONAL_SCF_GRP_5:
+ i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id;
+ chunk.tonal_grp[i].id = i;
+ chunk.tonal_grp[i].len = chunk_len;
+ chunk.tonal_grp[i].data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_RES_GRID_LR:
+ case LBR_CHUNK_RES_GRID_LR + 1:
+ case LBR_CHUNK_RES_GRID_LR + 2:
+ i = chunk_id - LBR_CHUNK_RES_GRID_LR;
+ chunk.grid1[i].len = chunk_len;
+ chunk.grid1[i].data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_RES_GRID_HR:
+ case LBR_CHUNK_RES_GRID_HR + 1:
+ case LBR_CHUNK_RES_GRID_HR + 2:
+ i = chunk_id - LBR_CHUNK_RES_GRID_HR;
+ chunk.hr_grid[i].len = chunk_len;
+ chunk.hr_grid[i].data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_RES_TS_1:
+ case LBR_CHUNK_RES_TS_1 + 1:
+ case LBR_CHUNK_RES_TS_1 + 2:
+ i = chunk_id - LBR_CHUNK_RES_TS_1;
+ chunk.ts1[i].len = chunk_len;
+ chunk.ts1[i].data = gb.buffer;
+ break;
+
+ case LBR_CHUNK_RES_TS_2:
+ case LBR_CHUNK_RES_TS_2 + 1:
+ case LBR_CHUNK_RES_TS_2 + 2:
+ i = chunk_id - LBR_CHUNK_RES_TS_2;
+ chunk.ts2[i].len = chunk_len;
+ chunk.ts2[i].data = gb.buffer;
+ break;
+ }
+
+ bytestream2_skip(&gb, chunk_len);
+ }
+
+ // Parse the chunks
+ ret = parse_lfe_chunk(s, &chunk.lfe);
+
+ ret |= parse_tonal_chunk(s, &chunk.tonal);
+
+ for (i = 0; i < 5; i++)
+ ret |= parse_tonal_group(s, &chunk.tonal_grp[i]);
+
+ for (i = 0; i < (s->nchannels + 1) / 2; i++) {
+ int ch1 = i * 2;
+ int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
+
+ if (parse_grid_1_chunk (s, &chunk.grid1 [i], ch1, ch2) < 0 ||
+ parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) {
+ ret = -1;
+ continue;
+ }
+
+ // TS chunks depend on both grids. TS_2 depends on TS_1.
+ if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len)
+ continue;
+
+ if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 ||
+ parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) {
+ ret = -1;
+ continue;
+ }
+ }
+
+ if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE))
+ return AVERROR_INVALIDDATA;
+
+ return 0;
+}
+
+/**
+ * Reconstruct high-frequency resolution grid from first and third grids
+ */
+static void decode_grid(DCALbrDecoder *s, int ch1, int ch2)
+{
+ int i, ch, sb;
+
+ for (ch = ch1; ch <= ch2; ch++) {
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ int g1_sb = ff_dca_scf_to_grid_1[sb];
+
+ uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb ];
+ uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1];
+
+ int w1 = ff_dca_grid_1_weights[g1_sb ][sb];
+ int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb];
+
+ uint8_t *hr_scf = s->high_res_scf[ch][sb];
+
+ if (sb < 4) {
+ for (i = 0; i < 8; i++) {
+ int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
+ hr_scf[i] = scf >> 7;
+ }
+ } else {
+ int8_t *g3_scf = s->grid_3_scf[ch][sb - 4];
+ int g3_avg = s->grid_3_avg[ch][sb - 4];
+
+ for (i = 0; i < 8; i++) {
+ int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
+ hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i];
+ }
+ }
+ }
+ }
+}
+
+/**
+ * Fill unallocated subbands with randomness
+ */
+static void random_ts(DCALbrDecoder *s, int ch1, int ch2)
+{
+ int i, j, k, ch, sb;
+
+ for (ch = ch1; ch <= ch2; ch++) {
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ float *samples = s->time_samples[ch][sb];
+
+ if (s->ch_pres[ch] & (1U << sb))
+ continue; // Skip allocated subband
+
+ if (sb < 2) {
+ // The first two subbands are always zero
+ memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float));
+ } else if (sb < 10) {
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++)
+ samples[i] = lbr_rand(s, sb);
+ } else {
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) {
+ float accum[8] = { 0 };
+
+ // Modulate by subbands 2-5 in blocks of 8
+ for (k = 2; k < 6; k++) {
+ float *other = &s->time_samples[ch][k][i * 8];
+ for (j = 0; j < 8; j++)
+ accum[j] += fabs(other[j]);
+ }
+
+ for (j = 0; j < 8; j++)
+ samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb);
+ }
+ }
+ }
+ }
+}
+
+static void predict(float *samples, const float *coeff, int nsamples)
+{
+ int i, j;
+
+ for (i = 0; i < nsamples; i++) {
+ float res = 0;
+ for (j = 0; j < 8; j++)
+ res += coeff[j] * samples[i - j - 1];
+ samples[i] -= res;
+ }
+}
+
+static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb)
+{
+ int f = s->framenum & 1;
+ int ch;
+
+ for (ch = ch1; ch <= ch2; ch++) {
+ float *samples = s->time_samples[ch][sb];
+
+ if (!(s->ch_pres[ch] & (1U << sb)))
+ continue;
+
+ if (sb < 2) {
+ predict(samples, s->lpc_coeff[f^1][ch][sb][1], 16);
+ predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 64);
+ predict(samples + 80, s->lpc_coeff[f ][ch][sb][1], 48);
+ } else {
+ predict(samples, s->lpc_coeff[f^1][ch][sb][0], 16);
+ predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 112);
+ }
+ }
+}
+
+static void filter_ts(DCALbrDecoder *s, int ch1, int ch2)
+{
+ int i, j, sb, ch;
+
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ // Scale factors
+ for (ch = ch1; ch <= ch2; ch++) {
+ float *samples = s->time_samples[ch][sb];
+ uint8_t *hr_scf = s->high_res_scf[ch][sb];
+ if (sb < 4) {
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) {
+ unsigned int scf = hr_scf[i];
+ if (scf > AMP_MAX)
+ scf = AMP_MAX;
+ for (j = 0; j < 16; j++)
+ samples[j] *= ff_dca_quant_amp[scf];
+ }
+ } else {
+ uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]];
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) {
+ unsigned int scf = hr_scf[i / 8] - g2_scf[i];
+ if (scf > AMP_MAX)
+ scf = AMP_MAX;
+ samples[0] *= ff_dca_quant_amp[scf];
+ samples[1] *= ff_dca_quant_amp[scf];
+ }
+ }
+ }
+
+ // Mid-side stereo
+ if (ch1 != ch2) {
+ float *samples_l = s->time_samples[ch1][sb];
+ float *samples_r = s->time_samples[ch2][sb];
+ int ch2_pres = s->ch_pres[ch2] & (1U << sb);
+
+ for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) {
+ int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1;
+ int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1;
+
+ if (sb >= s->min_mono_subband) {
+ if (lrms && ch2_pres) {
+ if (sbms) {
+ for (j = 0; j < 16; j++) {
+ float tmp = samples_l[j];
+ samples_l[j] = samples_r[j];
+ samples_r[j] = -tmp;
+ }
+ } else {
+ for (j = 0; j < 16; j++) {
+ float tmp = samples_l[j];
+ samples_l[j] = samples_r[j];
+ samples_r[j] = tmp;
+ }
+ }
+ } else if (!ch2_pres) {
+ if (sbms && (s->part_stereo_pres & (1 << ch1))) {
+ for (j = 0; j < 16; j++)
+ samples_r[j] = -samples_l[j];
+ } else {
+ for (j = 0; j < 16; j++)
+ samples_r[j] = samples_l[j];
+ }
+ }
+ } else if (sbms && ch2_pres) {
+ for (j = 0; j < 16; j++) {
+ float tmp = samples_l[j];
+ samples_l[j] = (tmp + samples_r[j]) * 0.5f;
+ samples_r[j] = (tmp - samples_r[j]) * 0.5f;
+ }
+ }
+
+ samples_l += 16;
+ samples_r += 16;
+ }
+ }
+
+ // Inverse prediction
+ if (sb < 3)
+ synth_lpc(s, ch1, ch2, sb);
+ }
+}
+
+/**
+ * Modulate by interpolated partial stereo coefficients
+ */
+static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2)
+{
+ int i, ch, sb, sf;
+
+ for (ch = ch1; ch <= ch2; ch++) {
+ for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) {
+ uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4];
+ float *samples = s->time_samples[ch][sb];
+
+ if (s->ch_pres[ch2] & (1U << sb))
+ continue;
+
+ for (sf = 1; sf <= 4; sf++, samples += 32) {
+ float prev = ff_dca_st_coeff[pt_st[sf - 1]];
+ float next = ff_dca_st_coeff[pt_st[sf ]];
+
+ for (i = 0; i < 32; i++)
+ samples[i] *= (32 - i) * prev + i * next;
+ }
+ }
+ }
+}
+
+/**
+ * Synthesise tones in the given group for the given tonal subframe
+ */
+static void synth_tones(DCALbrDecoder *s, int ch, float *values,
+ int group, int group_sf, int synth_idx)
+{
+ int i, start, count;
+
+ if (synth_idx < 0)
+ return;
+
+ start = s->tonal_bounds[group][group_sf][0];
+ count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1);
+
+ for (i = 0; i < count; i++) {
+ DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)];
+
+ if (t->amp[ch]) {
+ float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]];
+ float c = amp * cos_tab[(t->phs[ch] ) & 255];
+ float s = amp * cos_tab[(t->phs[ch] + 64) & 255];
+ const float *cf = ff_dca_corr_cf[t->f_delt];
+ int x_freq = t->x_freq;
+
+ switch (x_freq) {
+ case 0:
+ goto p0;
+ case 1:
+ values[3] += cf[0] * -s;
+ values[2] += cf[1] * c;
+ values[1] += cf[2] * s;
+ values[0] += cf[3] * -c;
+ goto p1;
+ case 2:
+ values[2] += cf[0] * -s;
+ values[1] += cf[1] * c;
+ values[0] += cf[2] * s;
+ goto p2;
+ case 3:
+ values[1] += cf[0] * -s;
+ values[0] += cf[1] * c;
+ goto p3;
+ case 4:
+ values[0] += cf[0] * -s;
+ goto p4;
+ }
+
+ values[x_freq - 5] += cf[ 0] * -s;
+ p4: values[x_freq - 4] += cf[ 1] * c;
+ p3: values[x_freq - 3] += cf[ 2] * s;
+ p2: values[x_freq - 2] += cf[ 3] * -c;
+ p1: values[x_freq - 1] += cf[ 4] * -s;
+ p0: values[x_freq ] += cf[ 5] * c;
+ values[x_freq + 1] += cf[ 6] * s;
+ values[x_freq + 2] += cf[ 7] * -c;
+ values[x_freq + 3] += cf[ 8] * -s;
+ values[x_freq + 4] += cf[ 9] * c;
+ values[x_freq + 5] += cf[10] * s;
+ }
+
+ t->phs[ch] += t->ph_rot;
+ }
+}
+
+/**
+ * Synthesise all tones in all groups for the given residual subframe
+ */
+static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf)
+{
+ int group;
+
+ // Tonal vs residual shift is 22 subframes
+ for (group = 0; group < 5; group++) {
+ int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group));
+ int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1;
+
+ synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx);
+ synth_tones(s, ch, values, group, (group_sf ) & 31, synth_idx);
+ }
+}
+
+static void transform_channel(DCALbrDecoder *s, int ch, float *output)
+{
+ LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS ], [4]);
+ LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]);
+ int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range;
+
+ // Clear inactive subbands
+ if (nsubbands < noutsubbands)
+ memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0]));
+
+ for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) {
+ // Hybrid filterbank
+ s->dcadsp->lbr_bank(values, s->time_samples[ch],
+ ff_dca_bank_coeff, sf * 4, nsubbands);
+
+ base_func_synth(s, ch, values[0], sf);
+
+ s->imdct.imdct_calc(&s->imdct, result[0], values[0]);
+
+ // Long window and overlap-add
+ s->fdsp->vector_fmul_add(output, result[0], s->window,
+ s->history[ch], noutsubbands * 4);
+ s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands],
+ s->window, noutsubbands * 4);
+ output += noutsubbands * 4;
+ }
+
+ // Update history for LPC and forward MDCT
+ for (sb = 0; sb < nsubbands; sb++) {
+ float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
+ memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float));
+ }
+}
+
+int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame)
+{
+ AVCodecContext *avctx = s->avctx;
+ int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1;
+ const int8_t *reorder;
+
+ avctx->channel_layout = channel_layouts[ch_conf];
+ avctx->channels = nchannels = channel_counts[ch_conf];
+ avctx->sample_rate = s->sample_rate;
+ avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
+ avctx->bits_per_raw_sample = 0;
+ avctx->profile = FF_PROFILE_DTS_EXPRESS;
+ avctx->bit_rate = s->bit_rate_scaled;
+
+ if (s->flags & LBR_FLAG_LFE_PRESENT) {
+ avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
+ avctx->channels++;
+ reorder = channel_reorder_lfe[ch_conf];
+ } else {
+ reorder = channel_reorder_nolfe[ch_conf];
+ }
+
+ frame->nb_samples = 1024 << s->freq_range;
+ if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
+ return ret;
+
+ // Filter fullband channels
+ for (i = 0; i < (s->nchannels + 1) / 2; i++) {
+ int ch1 = i * 2;
+ int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
+
+ decode_grid(s, ch1, ch2);
+
+ random_ts(s, ch1, ch2);
+
+ filter_ts(s, ch1, ch2);
+
+ if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1)))
+ decode_part_stereo(s, ch1, ch2);
+
+ if (ch1 < nchannels)
+ transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]);
+
+ if (ch1 != ch2 && ch2 < nchannels)
+ transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]);
+ }
+
+ // Interpolate LFE channel
+ if (s->flags & LBR_FLAG_LFE_PRESENT) {
+ s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]],
+ s->lfe_data, ff_dca_lfe_iir,
+ s->lfe_history, 16 << s->freq_range);
+ }
+
+ if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0)
+ return ret;
+
+ return 0;
+}
+
+av_cold void ff_dca_lbr_flush(DCALbrDecoder *s)
+{
+ int ch, sb;
+
+ if (!s->sample_rate)
+ return;
+
+ // Clear history
+ memset(s->part_stereo, 16, sizeof(s->part_stereo));
+ memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff));
+ memset(s->history, 0, sizeof(s->history));
+ memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds));
+ memset(s->lfe_history, 0, sizeof(s->lfe_history));
+ s->framenum = 0;
+ s->ntones = 0;
+
+ for (ch = 0; ch < s->nchannels; ch++) {
+ for (sb = 0; sb < s->nsubbands; sb++) {
+ float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
+ memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float));
+ }
+ }
+}
+
+av_cold int ff_dca_lbr_init(DCALbrDecoder *s)
+{
+ init_tables();
+
+ if (!(s->fdsp = avpriv_float_dsp_alloc(0)))
+ return -1;
+
+ s->lbr_rand = 1;
+ return 0;
+}
+
+av_cold void ff_dca_lbr_close(DCALbrDecoder *s)
+{
+ s->sample_rate = 0;
+
+ av_freep(&s->ts_buffer);
+ s->ts_size = 0;
+
+ av_freep(&s->fdsp);
+ ff_mdct_end(&s->imdct);
+}