summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBen Avison <bavison@riscosopen.org>2022-03-31 18:23:43 +0100
committerMartin Storsjö <martin@martin.st>2022-04-01 10:03:33 +0300
commit2698bfdc93d456d304a38b570052e1a238d64c54 (patch)
treed24db8bfa9f0ba5974a122e5596ea82f0df13491
parent20cb43ea8ba0471dcba442b8de8fa17ff41f6281 (diff)
checkasm: Add vc1dsp inverse transform tests
This test deliberately doesn't exercise the full range of inputs described in the committee draft VC-1 standard. It says: input coefficients in frequency domain, D, satisfy -2048 <= D < 2047 intermediate coefficients, E, satisfy -4096 <= E < 4095 fully inverse-transformed coefficients, R, satisfy -512 <= R < 511 For one thing, the inequalities look odd. Did they mean them to go the other way round? That would make more sense because the equations generally both add and subtract coefficients multiplied by constants, including powers of 2. Requiring the most-negative values to be valid extends the number of bits to represent the intermediate values just for the sake of that one case! For another thing, the extreme values don't look to occur in real streams - both in my experience and supported by the following comment in the AArch32 decoder: tNhalf is half of the value of tN (as described in vc1_inv_trans_8x8_c). This is done because sometimes files have input that causes tN + tM to overflow. To avoid this overflow, we compute tNhalf, then compute tNhalf + tM (which doesn't overflow), and then we use vhadd to compute (tNhalf + (tNhalf + tM)) >> 1 which does not overflow because it is one instruction. My AArch64 decoder goes further than this. It calculates tNhalf and tM then does an SRA (essentially a fused halve and add) to compute (tN + tM) >> 1 without ever having to hold (tNhalf + tM) in a 16-bit element without overflowing. It only encounters difficulties if either tNhalf or tM overflow in isolation. I haven't had sight of the final standard, so it's possible that these issues were dealt with during finalisation, which could explain the lack of usage of extreme inputs in real streams. Or a preponderance of decoders that only support 16-bit intermediate values in their inverse transforms might have caused encoders to steer clear of such cases. I have effectively followed this approach in the test, and limited the scale of the coefficients sufficient that both the existing AArch32 decoder and my new AArch64 decoder both pass. Signed-off-by: Ben Avison <bavison@riscosopen.org> Signed-off-by: Martin Storsjö <martin@martin.st>
-rw-r--r--tests/checkasm/vc1dsp.c283
1 files changed, 283 insertions, 0 deletions
diff --git a/tests/checkasm/vc1dsp.c b/tests/checkasm/vc1dsp.c
index 2fd6c74d6c..7d4457306f 100644
--- a/tests/checkasm/vc1dsp.c
+++ b/tests/checkasm/vc1dsp.c
@@ -30,12 +30,208 @@
#include "libavutil/mem_internal.h"
#define VC1DSP_TEST(func) { #func, offsetof(VC1DSPContext, func) },
+#define VC1DSP_SIZED_TEST(func, width, height) { #func, offsetof(VC1DSPContext, func), width, height },
typedef struct {
const char *name;
size_t offset;
+ int width;
+ int height;
} test;
+typedef struct matrix {
+ size_t width;
+ size_t height;
+ float d[];
+} matrix;
+
+static const matrix T8 = { 8, 8, {
+ 12, 12, 12, 12, 12, 12, 12, 12,
+ 16, 15, 9, 4, -4, -9, -15, -16,
+ 16, 6, -6, -16, -16, -6, 6, 16,
+ 15, -4, -16, -9, 9, 16, 4, -15,
+ 12, -12, -12, 12, 12, -12, -12, 12,
+ 9, -16, 4, 15, -15, -4, 16, -9,
+ 6, -16, 16, -6, -6, 16, -16, 6,
+ 4, -9, 15, -16, 16, -15, 9, -4
+} };
+
+static const matrix T4 = { 4, 4, {
+ 17, 17, 17, 17,
+ 22, 10, -10, -22,
+ 17, -17, -17, 17,
+ 10, -22, 22, -10
+} };
+
+static const matrix T8t = { 8, 8, {
+ 12, 16, 16, 15, 12, 9, 6, 4,
+ 12, 15, 6, -4, -12, -16, -16, -9,
+ 12, 9, -6, -16, -12, 4, 16, 15,
+ 12, 4, -16, -9, 12, 15, -6, -16,
+ 12, -4, -16, 9, 12, -15, -6, 16,
+ 12, -9, -6, 16, -12, -4, 16, -15,
+ 12, -15, 6, 4, -12, 16, -16, 9,
+ 12, -16, 16, -15, 12, -9, 6, -4
+} };
+
+static const matrix T4t = { 4, 4, {
+ 17, 22, 17, 10,
+ 17, 10, -17, -22,
+ 17, -10, -17, 22,
+ 17, -22, 17, -10
+} };
+
+static matrix *new_matrix(size_t width, size_t height)
+{
+ matrix *out = av_mallocz(sizeof (matrix) + height * width * sizeof (float));
+ if (out == NULL) {
+ fprintf(stderr, "Memory allocation failure\n");
+ exit(EXIT_FAILURE);
+ }
+ out->width = width;
+ out->height = height;
+ return out;
+}
+
+static matrix *multiply(const matrix *a, const matrix *b)
+{
+ matrix *out;
+ if (a->width != b->height) {
+ fprintf(stderr, "Incompatible multiplication\n");
+ exit(EXIT_FAILURE);
+ }
+ out = new_matrix(b->width, a->height);
+ for (int j = 0; j < out->height; ++j)
+ for (int i = 0; i < out->width; ++i) {
+ float sum = 0;
+ for (int k = 0; k < a->width; ++k)
+ sum += a->d[j * a->width + k] * b->d[k * b->width + i];
+ out->d[j * out->width + i] = sum;
+ }
+ return out;
+}
+
+static void normalise(matrix *a)
+{
+ for (int j = 0; j < a->height; ++j)
+ for (int i = 0; i < a->width; ++i) {
+ float *p = a->d + j * a->width + i;
+ *p *= 64;
+ if (a->height == 4)
+ *p /= (const unsigned[]) { 289, 292, 289, 292 } [j];
+ else
+ *p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [j];
+ if (a->width == 4)
+ *p /= (const unsigned[]) { 289, 292, 289, 292 } [i];
+ else
+ *p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [i];
+ }
+}
+
+static void divide_and_round_nearest(matrix *a, float by)
+{
+ for (int j = 0; j < a->height; ++j)
+ for (int i = 0; i < a->width; ++i) {
+ float *p = a->d + j * a->width + i;
+ *p = rintf(*p / by);
+ }
+}
+
+static void tweak(matrix *a)
+{
+ for (int j = 4; j < a->height; ++j)
+ for (int i = 0; i < a->width; ++i) {
+ float *p = a->d + j * a->width + i;
+ *p += 1;
+ }
+}
+
+/* The VC-1 spec places restrictions on the values permitted at three
+ * different stages:
+ * - D: the input coefficients in frequency domain
+ * - E: the intermediate coefficients, inverse-transformed only horizontally
+ * - R: the fully inverse-transformed coefficients
+ *
+ * To fully cater for the ranges specified requires various intermediate
+ * values to be held to 17-bit precision; yet these conditions do not appear
+ * to be utilised in real-world streams. At least some assembly
+ * implementations have chosen to restrict these values to 16-bit precision,
+ * to accelerate the decoding of real-world streams at the cost of strict
+ * adherence to the spec. To avoid our test marking these as failures,
+ * reduce our random inputs.
+ */
+#define ATTENUATION 4
+
+static matrix *generate_inverse_quantized_transform_coefficients(size_t width, size_t height)
+{
+ matrix *raw, *tmp, *D, *E, *R;
+ raw = new_matrix(width, height);
+ for (int i = 0; i < width * height; ++i)
+ raw->d[i] = (int) (rnd() % (1024/ATTENUATION)) - 512/ATTENUATION;
+ tmp = multiply(height == 8 ? &T8 : &T4, raw);
+ D = multiply(tmp, width == 8 ? &T8t : &T4t);
+ normalise(D);
+ divide_and_round_nearest(D, 1);
+ for (int i = 0; i < width * height; ++i) {
+ if (D->d[i] < -2048/ATTENUATION || D->d[i] > 2048/ATTENUATION-1) {
+ /* Rare, so simply try again */
+ av_free(raw);
+ av_free(tmp);
+ av_free(D);
+ return generate_inverse_quantized_transform_coefficients(width, height);
+ }
+ }
+ E = multiply(D, width == 8 ? &T8 : &T4);
+ divide_and_round_nearest(E, 8);
+ for (int i = 0; i < width * height; ++i)
+ if (E->d[i] < -4096/ATTENUATION || E->d[i] > 4096/ATTENUATION-1) {
+ /* Rare, so simply try again */
+ av_free(raw);
+ av_free(tmp);
+ av_free(D);
+ av_free(E);
+ return generate_inverse_quantized_transform_coefficients(width, height);
+ }
+ R = multiply(height == 8 ? &T8t : &T4t, E);
+ tweak(R);
+ divide_and_round_nearest(R, 128);
+ for (int i = 0; i < width * height; ++i)
+ if (R->d[i] < -512/ATTENUATION || R->d[i] > 512/ATTENUATION-1) {
+ /* Rare, so simply try again */
+ av_free(raw);
+ av_free(tmp);
+ av_free(D);
+ av_free(E);
+ av_free(R);
+ return generate_inverse_quantized_transform_coefficients(width, height);
+ }
+ av_free(raw);
+ av_free(tmp);
+ av_free(E);
+ av_free(R);
+ return D;
+}
+
+#define RANDOMIZE_BUFFER16(name, size) \
+ do { \
+ int i; \
+ for (i = 0; i < size; ++i) { \
+ uint16_t r = rnd(); \
+ AV_WN16A(name##0 + i, r); \
+ AV_WN16A(name##1 + i, r); \
+ } \
+ } while (0)
+
+#define RANDOMIZE_BUFFER8(name, size) \
+ do { \
+ int i; \
+ for (i = 0; i < size; ++i) { \
+ uint8_t r = rnd(); \
+ name##0[i] = r; \
+ name##1[i] = r; \
+ } \
+ } while (0)
+
#define RANDOMIZE_BUFFER8_MID_WEIGHTED(name, size) \
do { \
uint8_t *p##0 = name##0, *p##1 = name##1; \
@@ -49,6 +245,89 @@ typedef struct {
} \
} while (0)
+static void check_inv_trans_inplace(void)
+{
+ /* Inverse transform input coefficients are stored in a 16-bit buffer
+ * with row stride of 8 coefficients irrespective of transform size.
+ * vc1_inv_trans_8x8 differs from the others in two ways: coefficients
+ * are stored in column-major order, and the outputs are written back
+ * to the input buffer, so we oversize it slightly to catch overruns. */
+ LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [10 * 8]);
+ LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [10 * 8]);
+
+ VC1DSPContext h;
+
+ ff_vc1dsp_init(&h);
+
+ if (check_func(h.vc1_inv_trans_8x8, "vc1dsp.vc1_inv_trans_8x8")) {
+ matrix *coeffs;
+ declare_func_emms(AV_CPU_FLAG_MMX, void, int16_t *);
+ RANDOMIZE_BUFFER16(inv_trans_in, 10 * 8);
+ coeffs = generate_inverse_quantized_transform_coefficients(8, 8);
+ for (int j = 0; j < 8; ++j)
+ for (int i = 0; i < 8; ++i) {
+ int idx = 8 + i * 8 + j;
+ inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * 8 + i];
+ }
+ call_ref(inv_trans_in0 + 8);
+ call_new(inv_trans_in1 + 8);
+ if (memcmp(inv_trans_in0, inv_trans_in1, 10 * 8 * sizeof (int16_t)))
+ fail();
+ bench_new(inv_trans_in1 + 8);
+ av_free(coeffs);
+ }
+}
+
+static void check_inv_trans_adding(void)
+{
+ /* Inverse transform input coefficients are stored in a 16-bit buffer
+ * with row stride of 8 coefficients irrespective of transform size. */
+ LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [8 * 8]);
+ LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [8 * 8]);
+
+ /* For all but vc1_inv_trans_8x8, the inverse transform is narrowed and
+ * added with saturation to an array of unsigned 8-bit values. Oversize
+ * this by 8 samples left and right and one row above and below. */
+ LOCAL_ALIGNED_8(uint8_t, inv_trans_out0, [10 * 24]);
+ LOCAL_ALIGNED_8(uint8_t, inv_trans_out1, [10 * 24]);
+
+ VC1DSPContext h;
+
+ const test tests[] = {
+ VC1DSP_SIZED_TEST(vc1_inv_trans_8x4, 8, 4)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_4x8, 4, 8)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_4x4, 4, 4)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_8x8_dc, 8, 8)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_8x4_dc, 8, 4)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_4x8_dc, 4, 8)
+ VC1DSP_SIZED_TEST(vc1_inv_trans_4x4_dc, 4, 4)
+ };
+
+ ff_vc1dsp_init(&h);
+
+ for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
+ void (*func)(uint8_t *, ptrdiff_t, int16_t *) = *(void **)((intptr_t) &h + tests[t].offset);
+ if (check_func(func, "vc1dsp.%s", tests[t].name)) {
+ matrix *coeffs;
+ declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int16_t *);
+ RANDOMIZE_BUFFER16(inv_trans_in, 8 * 8);
+ RANDOMIZE_BUFFER8(inv_trans_out, 10 * 24);
+ coeffs = generate_inverse_quantized_transform_coefficients(tests[t].width, tests[t].height);
+ for (int j = 0; j < tests[t].height; ++j)
+ for (int i = 0; i < tests[t].width; ++i) {
+ int idx = j * 8 + i;
+ inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * tests[t].width + i];
+ }
+ call_ref(inv_trans_out0 + 24 + 8, 24, inv_trans_in0);
+ call_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1);
+ if (memcmp(inv_trans_out0, inv_trans_out1, 10 * 24))
+ fail();
+ bench_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1 + 8);
+ av_free(coeffs);
+ }
+ }
+}
+
static void check_loop_filter(void)
{
/* Deblocking filter buffers are big enough to hold a 16x16 block,
@@ -97,6 +376,10 @@ static void check_loop_filter(void)
void checkasm_check_vc1dsp(void)
{
+ check_inv_trans_inplace();
+ check_inv_trans_adding();
+ report("inv_trans");
+
check_loop_filter();
report("loop_filter");
}