#include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Functions.h" #include "cctk_Parameters.h" subroutine IDScalarWaveMoL_InitialData (CCTK_ARGUMENTS) implicit none DECLARE_CCTK_ARGUMENTS DECLARE_CCTK_FUNCTIONS DECLARE_CCTK_PARAMETERS CCTK_REAL one, two parameter (one = 1) parameter (two = 2) CCTK_REAL pi parameter (pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068d0) CCTK_REAL omega CCTK_REAL tmp integer i, j, k if (CCTK_EQUALS(initial_data, "plane wave")) then omega = sqrt(wave_number(1)**2 + wave_number(2)**2 $ + wave_number(3)**2) do k=1,cctk_lsh(3) do j=1,cctk_lsh(2) do i=1,cctk_lsh(1) tmp = wave_number(1)*(x(i,j,k)-phase_offset(1)) $ + wave_number(2)*(y(i,j,k)-phase_offset(2)) $ + wave_number(3)*(z(i,j,k)-phase_offset(3)) $ + omega*(cctk_time-time_offset) phi(i,j,k) = amplitude * cos (2*pi * tmp) psi(i,j,k) = - amplitude * 2*pi * omega * sin (2*pi * tmp) end do end do end do else if (CCTK_EQUALS(initial_data, "Gaussian pulse")) then omega = sqrt(pulse_direction(1)**2 + pulse_direction(2)**2 $ + pulse_direction(3)**2) do k=1,cctk_lsh(3) do j=1,cctk_lsh(2) do i=1,cctk_lsh(1) tmp = pulse_direction(1)*(x(i,j,k)-pulse_offset(1)) $ + pulse_direction(2)*(y(i,j,k)-pulse_offset(2)) $ + pulse_direction(3)*(z(i,j,k)-pulse_offset(3)) $ + omega*(cctk_time-time_offset) phi(i,j,k) = amplitude * exp (-0.5d0 * tmp**2) psi(i,j,k) = - tmp * omega * phi(i,j,k) end do end do end do else if (CCTK_EQUALS(initial_data, "Gaussian")) then do k=1,cctk_lsh(3) do j=1,cctk_lsh(2) do i=1,cctk_lsh(1) tmp = sqrt( (x(i,j,k)-origin(1))**2 $ + (y(i,j,k)-origin(2))**2 $ + (z(i,j,k)-origin(3))**2) if (tmp .gt. 1.0d-6 * sigma) then phi(i,j,k) = amplitude/2 $ * ( (cctk_time + tmp)/tmp * exp (-0.5d0 * ((cctk_time + tmp - radius) / sigma)**2) $ - (cctk_time - tmp)/tmp * exp (-0.5d0 * ((cctk_time - tmp - radius) / sigma)**2)) psi(i,j,k) = amplitude/2 $ * (+ (1 + (cctk_time + tmp) * (cctk_time + tmp - radius) / sigma**2) / tmp * exp (-0.5d0 * ((cctk_time + tmp - radius) / sigma)**2) $ - (1 + (cctk_time - tmp) * (cctk_time - tmp - radius) / sigma**2) / tmp * exp (-0.5d0 * ((cctk_time - tmp - radius) / sigma)**2)) else phi(i,j,k) = amplitude $ * ( (radius * cctk_time - cctk_time**2 + sigma**2) / sigma**2 $ + (radius**3 * cctk_time - cctk_time**4 + 6 * cctk_time**2 * sigma**2 - 3 * sigma**4 - 3 * radius**2 * (cctk_time - sigma)**2 + 3 * radius * (cctk_time**3 - 3 * cctk_time * sigma**2)) / (6 * sigma**6) * tmp**2) $ * exp (-0.5d0 * (radius - cctk_time)**2 / sigma**2) psi(i,j,k) = amplitude $ * ( (radius**2 * cctk_time - 2 * radius * cctk_time**2 + cctk_time**3 + 2 * radius * sigma**2 - 3 * cctk_time * sigma**2) / sigma**4 $ + (radius**4 * cctk_time + cctk_time**5 - 10 * cctk_time**3 * sigma**2 + 15 * cctk_time * sigma**4 - 4 * radius**4 * (cctk_time**2 - sigma**2) + 6 * radius**2 * (cctk_time**3 - 3 * cctk_time * sigma**2) - 4 * radius * (cctk_time**4 - 6 * cctk_time**2 * sigma**2 + 3 * sigma**4)) / (6 * sigma**8) * tmp**2) $ * exp (-0.5d0 * (radius - cctk_time)**2 / sigma**2) end if end do end do end do else if (CCTK_EQUALS(initial_data, "level index")) then do k=1,cctk_lsh(3) do j=1,cctk_lsh(2) do i=1,cctk_lsh(1) phi(i,j,k) = log (one * cctk_levfac(1)) / log (two) psi(i,j,k) = log (one * cctk_levfac(1)) / log (two) end do end do end do end if end