
Carpet Scheduling

Thomas Radke and Jonathan Thornburg

2 November 2006

Abstract

This document describes how scheduling works in (PUGH and) Carpet. This information is particularly
useful if you’re using Carpet and you need to do a mixture of local computations at each grid point (e.g.
computing some grid function), and global operations which need to operate across multiple grids (e.g.
computing norms of this grid function).

1 Introduction

Cactus offers a predefined set of about 20 schedule bins corresponding to major phases of a simulation, like
BASEGRID, INITIAL, POSTINITIAL, EVOL, etc. See the Cactus Users’ Guide for an up-to-date list of all the
schedule bins (currently these are listed in section E3).1

There are two major pieces of software involved in scheduling:

• The Cactus flesh.2 The flesh knows about everything in schedule.ccl files, and handles sorting scheduled
routines into an order which is consistent with the BEFORE and AFTER clauses in all the schedule groups.
The flesh also handles repeatedly calling scheduled routines which are scheduled with a WHILE clause. In
addition, the flesh determines when storage is turned on/off for grid scalars, functions, and arrays and
when grid arrays and functions are synchronised, based on the STORAGE: and SYNC: statements in schedule
blocks.

The flesh does not know anything about the spatial grid or grids, or how grid functions are stored in
memory or distributed across processors.

• The driver, typically PUGH or Carpet. The driver defines the set of allowed schedule bins. The driver
knows about the grid or grids, and how grid functions are stored in memory, distributed across processors,
and synchronised.

The driver does not know what’s in schedule.ccl files.

The basic flow of control in Cactus is that the flesh starts up, does some initialization, then calls the driver.
The driver does some more initialization, then sequences through the schedule bins; for each one it calls back
into the flesh to have the flesh call all the scheduled routines in that bin in the correct order.

2 PUGH Scheduling

When using the PUGH unigrid driver, the scheduling process is pretty simple, and is shown in figure 1. Nowdays
most evolutions use MoL; all the MoL evolution happens inside the EVOL schedule bin.

3 Carpet Scheduling

With Carpet the scheduling process is much more complicated, because there are (in general) many different
grids, and the various actions on the different grids have to be carefully coordinated to obtain accurate results.
Erik Schnetter, Scott Hawley, and Ian Hawke give a nice general description of Carpet in their paper [SHH04].

1Note that a few schedule bins (notably STARTUP, RECOVER PARAMETERS, and SHUTDOWN) have special semantics; much of the
description here doesn’t apply to them. Unless you really know what you’re doing, you should probably avoid scheduling routines
in these bins; instead use the WRAGH, BASEGRID, and TERMINATE schedule bins, respectively.

2Strictly speaking, what we’re calling the “flesh” is the combination of what’s done by the CST when configuring Cactus, and
by the actual Cactus flesh when Cactus runs. But this distinction isn’t important here, so for simplicity we just refer to the “flesh”.

1

3.1 The Berger-Oliger Algorithm

The basic idea underlying Carpet is mesh refinement : use small high-resolution grids in those parts of our
problem domain where they’re needed, and use lower resolution elsewhere. The goal is to approximate the
accuracy of using the finest grid spacing everywhere, while being vastly more efficient. The basic algorithm Carpet
uses to do this was first published by Marhsa Berger and Joseph Oliger [Ber82, BO84, Ber86, BC89, BR91].

The Berger-Oliger algorithm uses locally-uniform grids. When the grid resolution needs to be changed, it’s
changed by a fixed (integer) refinement factor, typically a factor of 2. Fine grids overlap coarser ones.3 The key
to the Berger-Oliger algorithm is that, when doing the time evolution, in each time step coarse grids are stepped
first, and their values are then interpolated (in space and/or time) as necessary to provide boundary conditions
for fine grids. This process is illustrated in figure 2.

Notice that after each fine grid has taken enough time steps to be at the same time level as next coarser grid,
the fine-grid values at points where there is a coarse-grid point are copied (“injected”) back to the coarse grid.
This keeps the coarse-grid evolution from gradually drifting away from the (more accurate) fine-grid evolution.

3.2 Grid Attributes

In Carpet, a local grid (a “cuboid” that has a uniform spacing in each axis, and lives on a single processor) has
a number of attributes:

mglevel
This is an integer specifying a “convergence level” in the sense of “convergence testing”. Convergence
levels are numbered from 0 (the lowest-resolution simulation) up up to some maximum value (≥ 0) for the
highest-resolution simulation. It’s important to realise that in this context “resolution” refers to the entire
ensemble of grids at at different refinement levels in the Berger-Oliger algorithm. That is, incrementing
mglevel means coarsening every grid in the Berger-Oliger algorithm by (typically) a factor of 2.

3One could imagine omitting those coarse grid points where there is also a finer grid, but the cost saving would be small, and the
bookkeeping quite messy, so it’s not worth doing this. (If you want to try, Carpet does support this; it is only necessary to choose
a grid structure that has a “hole” in the coarse grid.)

RECOVER PARAMETERS
STARTUP
WRAGH
PARAMCHECK
BASEGRID

Recover? (yes/no)
INITIAL
POSTINITIAL
POSTSTEP

RECOVER VARIABLES
POST RECOVER VARIABLES

CPINITIAL
ANALYSIS
OutputGH

main loop
over
time steps

Advance time
PRESTEP
EVOL (includes all of MoL)
POSTSTEP
CHECKPOINT
ANALYSIS
OutputGH

TERMINATE
SHUTDOWN

Figure 1: This figure shows the order in which PUGH sequences through the shedule bins.

2

Using convergence levels, you can run several simulations with different resolutions concurrently. This
might be useful in a multigrid solver and/or for a “shadow hierarchy” of grids for estimating the local
accuracy of an evolution (FIXME: REFERENCE FOR SHADOW HIERARCHY).

At present convergence levels aren’t used, so mglevel is always set to 0.

reflevel
This is an integer specifing the grid’s “refinement level” in the Berger-Oliger algorithm (at this convergence
level). Refinement levels are numbered from 0 (the coarsest or “base” grid) up to some maximum value
(≥ 0) for the finest grid.

map
This is an integer (≥ 0) specifying the “map” (grid patch) at this convergence level and refinement level.4

This will always be 0 unless you’re doing a multipatch simulation.

component
This is an integer (≥ 0) specifying one of the local grids in this map/patch. By definition, a given local
grid lives on a single processor; there may be multiple local grids on a single processor.

3.3 Modes

When looping over grids, Carpet has a standard order to loop over the attributes described in the previous
section. This is shown in figure 3. Corresponding to this, Carpet defines a set of “modes”, which correspond to
the depth in this set of nested loops. In more detail, the modes are as follows:

meta mode
In meta mode Carpet is logically outside its loops over convergence levels, refinement levels, maps/patches,
and components. Therefore, none of mglevel, reflevel, map, or component are defined.

global mode
In global mode Carpet is logically inside its loop over convergence levels, but outside its loops over re-

4The terms “map” and “patch” mean exactly the same thing. Carpet originally used the term “map”, but recently “patch” has
become more common. As a rule of thumb, the thorns in the Carpet arrangement generally use “map”, but other infrastructure
thorns (like MultiPatch and GZPatchSystem) generally use “patch”.

This figure doesn’t exist yet. :(

Figure 2: This figure shows an example of the sequence of operations for taking a single coarse-grid time step
using the Berger-Oliger mesh-refinement algorithm. There are 3 grids, a coarse grid (shown on the left), a
medium grid (shown in the middle), and a fine grid (shown on the right).

3

finement levels, maps/patches, and components. Therefore, mglevel is defined, but reflevel, map, and
component aren’t defined.

level mode
In level mode Carpet is logically inside its loops over convergence levels and refinement levels, but outside
its loops over maps/patches and components. Therefore, mglevel and reflevel are defined, but map and
component are not defined.

singlemap mode
In singlemap mode Carpet is logically inside its loops over convergence levels, refinement levels, and
maps/patches, but outside its loop over components. Therefore, mglevel, reflevel, and map are defined,
but component is not defined.

local mode
In local mode Carpet is logically inside its loops over convergence levels, refinement levels, maps/patches,
and components. Therefore, all of mglevel, reflevel, map, and component are defined.

#
meta mode
#
begin loop over mglevel (convergence level)

#
global mode
#
begin loop over reflevel (refinement level)

#
level mode
#
begin loop over map

#
singlemap mode
#
begin loop over component

#
local mode
#

end loop over component
#
singlemap mode
#

end loop over map
#
level mode
#

end loop over reflevel
#
global mode
#

end loop over mglevel
#
meta mode
#

Figure 3: This figure shows how Carpet loops over the various attributes of local grids, and how the Carpet
modes correspond to depth in this set of nested loops.

4

When you schedule a routine (by writing a schedule block in a schedule.ccl file), you specify what mode it
should run in. If you don’t specify a mode, the default is local. You can also specify various schedule options;
some of these are used in the Carpet scheduling algorithms discussed in section 3.4.

Since convergence levels aren’t used at present, for most practical purposes meta mode is identical to global
mode. Similarly, unless you’re doing multipatch simulations, singlemap mode is identical to level mode.

Table 1 shows which of the grid attributes and predefined Cactus macros and variables are defined in each
mode. [Notice that for backwards compatability and simpler program in the most common (single-patch) case,
some variables which are logically only defined in singlemap and local modes, are “extended” to also be defined
in level mode in single-patch simulations.]

3.3.1 What to Do in Each Mode

As can be seen from table 1, grid functions are defined only in local mode. Since most physics code needs
to manipulate grid functions, it therefore must run in local mode. (That’s why local is the default mode in a
schedule.ccl schedule block.)

However, in general code scheduled in local mode will run multiple times (because it’s nested inside loops
over mglevel, reflevel, map, and component). Sometimes you don’t want this. For example, you may want to
open or close an output file, or initialize some global property of your simulation. Meta or global modes (recall
that they’re identical for most purposes) are good for this kind of thing.

Level mode is in some sense the natural mode for Berger-Oliger mesh refinement. That is, the Berger-Oliger
algorithm is naturally written in terms of computations done in level mode. Level mode is convenient for things
like convergence tests that depend on the grid spacing.

Singelmap mode is mostly useful (and differs from level mode) only if you’re doing multipatch simulations.
Synchronization and turning storage on/off happen in level mode.5 (At any time only the “current” refinement

level has storage turned on.) Boundary conditions must be selected (in the sense of thorn Boundary) in level
mode. Cactus output must be done in level mode.

Reduction/interpolation of grid arrays and/or grid functions may be done in either level mode (applying only
to that refinement level), or in global mode (applying to all refinement levels).

5For backwards compatibility, these operations are also allowed (with a warning message printed) in singlemap and local modes
if there is only one component per processor.

meta global level singlemap local
mglevel ×

√ √ √ √

reflevel × ×
√ √ √

map × × ×
√ √

component × × × ×
√

CCTK ORIGIN SPACE × ×
√

if single-patch
√ √

CCTK DELTA SPACE × ×
√

if single-patch
√ √

CCTK DELTA TIME × ×
√ √ √

cctk origin space ×
√

(coarse)
√

(coarse) if single-patch
√

(coarse)
√

(coarse)
cctk delta space ×

√
(coarse)

√
(coarse) if single-patch

√
(coarse)

√
(coarse)

cctk delta time ×
√

(coarse)
√

(coarse)
√

(coarse)
√

(coarse)
grid scalars ×

√ √ √ √

grid arrays ×
√ √ √ √

grid functions × × × ×
√

Table 1: This table shows what grid attributes and Cactus variables are defined in each Carpet mode.
“
√

if single-patch” means that the corresponding macros are defined if this is a single-patch simulation, but not
if this is a multipatch simulation.
“
√

(coarse)” means that the corresponding variables are defined, and that they describe the coarsest refinement
level.

5

3.3.2 Querying and Changing Modes

Normally, Carpet changes between modes automatically. But for advanced programming, sometimes you need
to do this explicitly. Carpet has various functions to query what mode you’re in, and functions and macros to
change modes. These are all defined in Carpet/Carpet/src/modes.hh, and are only usable from C++ code.

To use any of these facilities, put the line “uses include: carpet.hh” in your interface.ccl, then include
"carpet.hh" in your C++ source code (this must come after including "cctk.h").

To query the current mode, just use any of the Boolean predicates is_meta_mode(), is_global_mode(),
. . . , is_local_mode(). A common usage of these is in assertions, to verify that the mode is what it should be,
e.g.

#include <cassert>

#include "cctk.h"
#include "carpet.hh"

void my_function(...)
{
// make sure we’re in level mode
assert(Carpet::is_level_mode());
...
}

For changing modes, the macros defined in carpet.hh provide a higher-level interface, and automagically
enforce proper nesting of the modes (in the sense of figure 3). The mode-changing functions provide a lower-
level interface, and do not enforce proper nesting, but they can be used with explicit Carpet:: namespace
qualifications (i.e., without having to import the entire Carpet:: namespace).

The macros set the cctkGH entries as appropriate. However, they don’t define or undefine grid functions, grid
variables, or any cctk_* variables; to do this, you need to place a DECLARE_CCTK_ARGUMENTS inside the macro
loop.

The most commonly-used macros are probably the looping ones, which come in pairs BEGIN_*_LOOP and
END_*_LOOP. These let you move one level deeper in the loop hierarchy. There are also ENTER_*_MODE and
LEAVE_*_MODE macros, which let you escape out of a level (or even levels!) in the loop hierarchy.

Some of these macros also require a grouptype argument; this is either CCTK_GF or CCTK_ARRAY to specify
whether you are looping over grid function components or grid array components.

3.4 The Carpet Scheduling Pipeline

It’s useful to think of the overall Carpet scheduling process as a pipeline (in the Unix sense) of 3 subprocesses:

1. First, Carpet runs the Berger-Oliger mesh refinement algorithm, as described in section 3.1. Figure 4 gives
a summary of how Carpet uses the Berger-Oliger algorithm to step through scheule groups and refinement
levels. Figure 5 describes this in (much!) more detail.

Notice that while some loops in the algorithm traverse the different refinement levels from coarse grids to
fine grids as described above, other loops traverse the levels in the opposite direction. This is done to make
boundary conditions and symmetries work better.

Logically, the output of Carpet’s Berger-Oliger algorithm is a sequence of tuples:

(schedule bin, mglevel, reflevel)

Since these tuples have definite mglevel and reflevel values, but no map or component values, they’re
semantically in level mode.

2. Next, for each schedule bin output by the previous “pipeline stage”, the Cactus flesh sorts all the sched-
uled routines in that bin into some order which is consistent with the combination of all active thorns’
schedule.ccl files.6 This is where BEFORE, AFTER, and WHILE clauses in schedule.ccl files are interpreted.

6Strictly speaking, “scheduled routine” here also includes entry to and exit from a schedule group, since storage may need to be
turned on or off when these events happen.

6

Logically, the output of this pipeline stage is a sequence of tuples:

(scheduled routine, schedule mode, schedule options, mglevel, reflevel)

For this “pipeline stage”, the schedule mode and options are just uninterpreted tokens to be passed along
to the next stage — there’s no knowledge (yet) of what they mean.

3. Finally, Carpet applies the schedule options for each scheduled routine, in the manner shown in figure 6.
This generates a sequence of calls on scheduled routines. Some calls may be performed in a loop (e.g. for
local mode), while others may be skipped (e.g. for global mode).

3.5 Examples, Tips, and Tricks

This section needs more writing. :(

3.5.1 Example 1

Problem
How to perform a global operation (e.g. maximum reduction) once at CCTK_POSTINITIAL (call the routine

which performs this global operation routine A), before another routine, B, which is scheduled in local mode.
As a further constraint, suppose that the scheduling of thorn B cannot be modified.

A solution
Use the Carpet namespace functions to manually change mode, before executing the global computation, and

then go back to the original mode. That is, schedule A in local mode BEFORE B:

schedule A AT CCTK_PostInitial BEFORE B
{
LANG: C

} "global operation"

where A is the C++ (this is necessary in order to access the carpet namespace variables and functions which
are used in the routine) routine described in Fig. 7

3.6 Other Miscellaneous Stuff

Erik says: I am surprised that the POSTSTEP loop for the initial data is fine–to–coarse. I think people may apply
boundary conditions in this bin. . .Maybe this loop needs to be reversed?

References

[BC89] Marsha J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys., 82:64–84, 1989.

[Ber82] Marsha J. Berger. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. PhD thesis,
Stanford University, 1982. University Microfilms #DA 83-01196.

[Ber86] Marsha J. Berger. Data structures for adaptive grid generation. SIAM Journal of Scientific and
Statistical Computing, 7(3):904–916, July 1986.

[BO84] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484–512, 1984.

[BR91] M. Berger and I. Rigoutsos. Adaptive mesh refinement for hyperbolic partial differential equations.
IEEE Transactions on Systems, Man and Cybernetics, 21(5), 1991.

[SHH04] Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3D numerical relativity using fixed
mesh refinement. Class. Quantum Grav., 21(6):1465–1488, 21 March 2004.

7

RECOVER PARAMETERS
STARTUP
WRAGH
PARAMCHECK

Recover? (yes/no)
PREREGRIDINITIAL
Regrid
POSTREGRIDINITIAL

Recover grid structure

initial
loop

BASEGRID
INITIAL
POSTINITIAL
−→ Recurse
Restrict
POSTRESTRICTINITIAL
POSTSTEP

recover
loop

BASEGRID
RECOVER VARIABLES
POST RECOVER VARIABLES −→
Recurse

3 Time Level Initialisation

initial
loop

−→ Recurse
CPINITIAL
ANALYSIS
OutputGH

main loop
over
time steps

PREREGRID
Regrid
POSTREGRID
Advance time
PRESTEP
EVOL
−→ Recurse
Restrict
POSTRESTRICT
POSTSTEP
CHECKPOINT
ANALYSIS
OutputGH

shutdown
loop

−→ Recurse
TERMINATE

SHUTDOWN

Figure 4: This figure gives an outline of how Carpet uses the Berger-Oliger algorithm to sequence through the
schedule bins and grids. See figure 5 for a (much!) more detailed description of the algorithm.
In general, all the loops are traversed in the order from coarse grids to fine grids. FIXME: ARE THERE
EXCPETIONS TO THIS RULE (AMONG THE LOOPS SHOWN IN THIS FIGURE)?

8

RECOVER PARAMETERS
STARTUP

loop ↑ mglevels WRAGH
PARAMCHECK

Recover? no yes

loop ↑
reflevels

loop ↑
mglevels

BASEGRID
INITIAL POSTINI-
TIAL

loop ↑
mglevels PREREGRID

Regrid

loop ↑
mglevels POSTREGRID

loop ↓ reflevels
loop ↑ mglevels Restrict

loop ↑ reflevels
loop ↑ mglevels

POSTRESTRICTINITIAL
POSTSTEP

3 Time Level Initialisation

loop ↑
reflevels

loop ↑
mglevels

BASEGRID
RECOVER VARIABLES

loop ↑
mglevels PREREGRID

Regrid

loop ↑
mglevels POSTREGRID

loop ↑ reflevels
loop ↑ mglevels POST RECOVER VARIABLES

loop ↑ reflevels
loop ↑ mglevels

CPINITIAL
ANALYSIS
OutputGH

main loop
over
time steps

loop ↑ reflevels
loop ↓ mglevels PREREGRID

loop ↑ reflevels Regrid

loop ↑ reflevels
loop ↓ mglevels POSTREGRID

loop ↓ mglevels
loop ↑ reflevels

Advance time
PRESTEP
EVOL (includes all of MoL)

loop ↓ mglevels
loop ↓ reflevels Restrict

loop ↓ mglevels
loop ↑ reflevels

POSTRESTRICT
POSTSTEP
CHECKPOINT
ANALYSIS
OutputGH

loop ↓ reflevels
loop ↓ mglevels TERMINATE

loop ↓ mglevels SHUTDOWN

Figure 5: This figure gives a detailed description of how Carpet uses the Berger-Oliger algorithm to sequence
through the schedule bins and grids (see figure 4 for a summary of the algorithm).
↑ loops iterate upwards on mglevel or reflevel, i.e. (for reflevel) from coarse grids to fine grids.
↓ loops iterate downwards on mglevel or reflevel, i.e. (for reflevel) from fine grids to coarse grids.
At present mglevels aren’t used, i.e. the mglevels loops have only a single iteration. Erik: ES: The postre-
grid bin loops now over all time levels. The initial bin can also do this if init all timelevels is
selected. Erik: ES: Some of these loops may have change recently. Check.

9

procedure Carpet_use_modes(function scheduled_routine,
string schedule_mode,
string schedule_options,
int mglevel, int reflevel)

select case schedule_mode
case META:

if (do_global_mode_routines_now() and this is the coarsest convergence level)
then call scheduled_routine() in META mode

case GLOBAL:
if (do_global_mode_routines_now())

then call scheduled_routine(mglevel) in GLOBAL mode
case LEVEL:

call scheduled_routine(mglevel, reflevel) in LEVEL mode
case SINGLEMAP:

begin loop over all maps m in (mglevel, reflevel)
call scheduled_routine(mglevel, reflevel, m) in SINGLEMAP mode

end loop over map m
case LOCAL:

begin loop over all maps m in (mglevel, reflevel)
begin loop over all components c in (mglevel, reflevel, m)

call scheduled_routine(mglevel, reflevel, m, c) in LOCAL mode
end loop over components c

end loop over map m
end select case
end procedure

Boolean function do_global_mode_routines_now()
FIXME: THIS IS COMPLICATED AND VARIES FROM ONE SCHEDULE BIN TO ANOTHER,

BUT IT IS USUALLY A TEST OF THE FORM
reflevel == R
where R is either the coarsest or the finest reflevel

end function

In Carpet_use_modes(), suppose schedule_mode is X. Then if schedule_options is “loop-Y”, replace

call scheduled_routine(X_arguments) in X mode

by

loop over all ... in ...
loop over all ... in ...

call scheduled_routine(X_arguments, ...) in Y mode
end loop over ...

end loop over ...

with the appropriate number and kind of loops to get from X mode to Y mode, and with the corresponding
set of extra arguments to the scheduled routine. [If X is LEVEL, SINGLEMAP, or LOCAL, then this gives
exactly the same result as just scheduling scheduled_routine in Y mode, so the “loop-Y” schedule option is
only interesting (gives new semantics) if X is META or GLOBAL.]

Figure 6: This figure shows how Carpet uses modes when calling scheduled routines. The input to this algorithm
is the sequence of (scheduled routine, schedule mode, schedule options, mglevel, reflevel) tuples produced
as Carpet steps through the Berger-Oliger algorithm (figures 4 and 5).

10

#include "Carpet/Carpet/src/carpet.hh"

void A(CCTK_ARGUMENTS)
{
DECLARE_CCTK_ARGUMENTS;
DECLARE_CCTK_PARAMETERS;
static int flag = true; // flag used to have this routine effectively executed only once

// Store the present values of the active refinement level, single map and component.
// Variables from the Carpet namespace.
int rl = Carpet::reflevel;
int singlemap = Carpet::map;
int comp = Carpet::component;

if (flag)
{
// Go to global mode
// That is:
// Leave local mode
assert(Carpet::is_local_mode());
Carpet::leave_local_mode (cctkGH);

// Leave singlemap mode
assert(Carpet::is_singlemap_mode());
Carpet::leave_singlemap_mode (cctkGH);

// Leave level mode
assert(Carpet::is_level_mode());
Carpet::leave_level_mode (cctkGH);

assert(Carpet::is_global_mode());

// Do the global operation
...
// Go back to local mode

// Enter level mode
Carpet::enter_level_mode (cctkGH, rl);
assert(Carpet::is_level_mode());

// Enter singlemap mode
Carpet::enter_singlemap_mode (cctkGH, singlemap);
assert(Carpet::is_singlemap_mode());

// Enter local mode
Carpet::enter_local_mode (cctkGH, comp);
assert(Carpet::is_local_mode());

}
// After this has run once, set the flag so that this does not run again
flag = false;

} // end if (flag)
else
{
return;

}
}

Figure 7: Example1: perform a global operation A, before given local routine B, in the case that the scheduling
of thorn B cannot be modified.

11

