Carpet under the hood

Erik Schnetter <schnetter@uni-tuebingen.de>

May 3, 2003

Abstract

This document describes the internal workings of the Carpet arrange-
ment. Its intended readership are people who extend Carpet, or who use
Carpet more thant the average user. This document is supposed to be read
in conjuction with and guiding through the source code.

Contents
IOverview]

2 Terminology|

B__The driver
3.1 Specifyingthegridextent|
35 The timelind

322 Evolution|
3.3 Calling scheduled routines|.
3.4 Grid arraysand gridscalars| o000

3.5 Fleshinterfaces|

.7 Missmgparts| 0 L.

4 The workhorsel

41 Thehelpers|.
4.2 The grid hierarchy|
4.3 Theinterpolators|

|5 Regridding, how and where and when|

|6 Random ramblings|

N

N

O \O 0 00O Ul = WWw

1 Overview

The Carpet driver, which lives in the Carpet arrangement, is divided into sev-
eral parts. The thorn Carpet is the main driver piece; it provides all the rou-
tines and structures that Cactus expects from it. The thorn CarpetLib is the
workhorse that does all the bookkeeping and data shuffling. Those two alone
form a valid Cactus driver; the other thorns provide additional functional-
ity. The thorns CarpetInterp, CarpetReduce, and CarpetSlab provide the
corresponding interpolation, reduction, and slabbing interfaces. The thorns
CarpetIOASCII and CarpetIOFlexIO provide I/O methods. Finally, thorn
CarpetRegrid provides a user interface to select where and what to refine. (The
actual refinement is handled in CarpetLib.)

2 Terminology

Carpet is called “Carpet” because a carpet consists of many individual patches.

Carpet is a mesh refinement driver. It knows about a hierarchy of refine-
ment levels, where each level is decomposed into a set of cuboid grid patches.
For historic reasons it also has a notion of multigrid levels, but those are cur-
rently unused. They might conceivably be reactivated to form multigrid stacks
to solve elliptic equations. The grid patch is the smallest unit of grid points
that Carpet deals with. Carpet parallelises by assigning sets of grid patches to
processors.

A multi-patch run is a run where more than one grid patch (of the same
refinement level) is assigned to a single processor. This is a situation that can
occur even without refinement. This is also a situation that cannot occur with
PUGH, so that most thorns cannot handle this situation. In multi-patch runs
one has to distinguish between local mode, where one has access to a single grid
patch, and global mode, where one cannot access individual grid patches, but
can instead perfom global operations such as synchronisation, interpolation,
or reduction. This part of Cactus is currently (2003-04-30) undergoing changes.

Carpet uses vertex-centered refinement. That is, each coarse grid point co-
incides with a fine grid point. To regrid means to select a new set of grid patches
for each refinement level. To recompose the grid hierarchy means to move data
around. Regridding is only about bookkeeping, while recomposing is about
data munging.

Each grid patch can be divided in up to four zones: the interior, the outer
boundary, and the ghost zone, and the refinement boundary. The interior is
where the actual compuations go on. The outer boundary is where the users’
outer boundary condition is applied; from Carpet’s point of view, these two are
the same. (The only difference is that Carpet sets cctk_bbox correspondingly.)
The ghost zones are boundaries to other grid patches on the same refinement
level (that might live on a different processor). The refinement boundary is
the boundary of the refined region in a level, and it is filled by prolongation

(interpolation) from the next coarser level. Both the ghost zones and the pro-
longation boundary are filled by synchronising.

Grid patches that are on the same refinement level never overlap except
with their ghost zones. Conversly, all ghost zones must overlap with a non-
ghost zone of another grid patch of the same level. All refinement boundaries
must overlap with a grid patch on the next coarser level. (This is also called
proper nesting.)

Except for exceptions, Carpet numbers grid point indices and time levels
with integers. It counts always in terms of the finest grid, so that coarser grids
have strides that are powers of the refinement factor. This has the advantage
that different refinement levels can use the same global numbering scheme.

The grid patches are described by a bounding box (abbreviated
bbox, see CarpetLib/src/bbox.x.). This is a triplet of wvectors (see
CarpetLib/src/vect.*), where each triplet specifies lower bound, upper bound,
and stride, much as is conventional in Fortran. Triplets are enclosed in round
parentheses (- : - : -), and vectors are enclosed in square brackets [-,-,---]. A
typical grid patch might have a bounding box which is denoted by ([0, 0, 0] :
[20,20,20] : [2,2,2]). This is to be read as (lower : upper : stride), meaning
that the grid patch has one corner grid point at [0, 0, 0], the diagonally oppo-
site corner grid point at [20, 20, 20], and the grid points are spaced two “fine
grid spacings” apart. This grid patch contains 11 x 11 x 11 grid points. Empty
bboxes have an upper bound that is strictly lower than the lower bound. The
files CarpetLib/src/vect.* contains many useful routines to deal with short
vectors, and the files CarpetLib/src/bbox.* contain routines deal with an
algebra of bboxes. The files CarpetLib/src/bboxset.* contain routines that
handle sets of bboxes.

3 The driver

The driver consists of the two thorns Carpet and CarpetLib. Carpet is the
front end to Cactus, while CarpetLib is the back end to the machine. Carpet
specifies the grid shape, decides when to allocate and deallocate storage, cy-
cles through thes schedule bins, and passes all internal information in the cGH
structure to the thorns.

3.1 Specifying the grid extent

Carpet defines the usual parameters necessary to specify the extent of the grid.
Everything that has to do with coordinates and symmetries is handled else-
where, and the driver does not know about that.

The global_* parameters specify the global extent of the coarsest grid. Not
all of this grid needs to be covered by grid patches. It is conceivable to have
an L-shaped simulation domain without any refinement. This situation can be
described to Carpet by specifying a global shape that is the convex hull of the
domain, and then using two cuboid grid patchs to fill in the shape of the L.

The ghost_* parameters specify the number of ghost zones. The periodic*
parameters are unused; they are only there because some thorns look at these
parameters. Carpet itself does not supply periodic boundary conditions; they
have to be handled by another thorn. The size of the prolongation boundary is
the same as the number of ghost zones.

The parameter max_refinement_levels specifies the maximum number of
levels that can be present in a run, including the base level. This parameter,
together with refinement_factor, define the grid point numbering scheme,
which (see above) depends on the finest possible grid. However, none of the
finer levels will be activated automatically. The multigrid_* parameters are
unused.

The parameter base_extents specifies the shapes of the grid patches that
are present on the coarsest grid. This can be used to set up e.g. an L-shaped
domain. The parameter base_outerbounds specifies which of the grid patches’
boundaries are to be treated as outer boundaries, i.e. for which of those
cctk_bbox should be set to 1.

Carpet currently ignores enable_all_storage and always enables all stor-
age. This is because it is not yet clear how individual grid function can be
allocated and deallocated while still keeping enough data for the boundary
prolongation.

Checksumming and poisoning are means to find thorns that alter grid vari-
ables that should not be altered, or that fail to fill in grid variables that they
should fill in.

None of the above specifies anything about refined grids. Refined grid are
created and destroyed at run time, possibly guided by the thorn CarpetRegrid
which provides a nice user interface.

3.2 The timeline

It is Carpet’s task to walk through the schedule bins and call all user routines.
Only some fairly fundamental initialisation happens in the flesh before Carpet
takes control. The overall picture of what happens when is:

1. Startup (see file Carpet/src/CarpetStartup.cc). This is the only sched-
uled routine; everything else happens by overloading and registering.
This routine does nothing but registering and overloading.

2. SetupGH (see file Carpet/src/SetupGH. cc). This routine does the bulk
of initialising Carpet. It sets up the internal structures for all grid vari-
ables.

3. Initialise (see file Carpet/src/Initialise.cc). This routine walks the
initialisation part of the scheduling bins.

4. Evolve (see file Carpet/src/Evolve.cc). This routine walks the evolu-
tion part of the scheduling bins. It also contains the main evolution loop.

5. Shutdown (see file Carpet/src/Shutdown.cc). This routine walks the
shutdown part of the scheduling bins. Normally, nothing interesting
happens here.

These stages are explained in the following sections.

3.2.1 Initialisation

(See file Carpet/src/Initialise.cc.) In this stage Carpet initialises the sim-
ulation. This includes setting up the grids, calling routines to register symme-
tries and boundary conditions, as well as calculating the actual initial data on
several refinement levels.

There are three parameters influencing initial data generation, and it does
not make sense to set more than one to "yes”:

MoL::initial_data_is_crap
Carpet::init_each_timelevel
Carpet::init_3_timelevels

That is, you have four methods, and the default (all no) gives you wrong
data on the past timelevels and hence wrong data on the interpolated refine-
ment boundaries when you use second order time interpolation. For first order
time interpolation, all four methods are identical.

With all three parameters set to “no” Carpet traverses the scheduling bins
in the following order:

1. Set cctk_iteration to zero
2. Set cctk_time to the initial time
3. PARAMCHECK
4. Loop over refinement levels, starting from coarsest:
5. BASEGRID
6. INITIAL
7. POSTINITIAL
8. POSTSTEP
9. Regrid (possibly creating new levels)
10. End loop over refinement levels
11. Restrict from finer to coarser grids
12. Loop over refinement levels, starting from coarsest:
13. RECOVER_VARIABLES
14. CPINITIAL
15. ANALYSIS
16. OutputGH

17. End loop over refinement levels

In the beginning, only the coarsest level exists. The first loop starts by ini-
tialising this level. At the end of this loop, more levels are created if desired.
This makes it possible to make this decision depend on an automatic refine-
ment criterion.

MoL::initial_data_is_crap performs all steps as indicated. After
when the evolution starts, MoL copies the current timelevels to the past
timelevels.

Carpet::init_each timelevel loops the steps 5 to 8 over all timelevels,
setting cctk_time differently each time.

Finally, Carpet::init_3_timelevels performs all steps in order, but
evolves each level forward one and backwards two steps, creating two past
time levels.

The parameter that specifies the number of refinement levels is not a Car-
pet parameter, but a CarpetRegrid parameter. CarpetRegrid determines item
[] i.e., whether to create a new, finer level when the coarser levels have been
initialised. CarpetRegrid has a host of other parameters, and it can decide item
9] also by a different means, e.g. —in principle— through the local truncation
error.

3.2.2 Evolution

(See file Carpet/src/Evolve.cc.) In this stage Carpet performs the main time
evolution loop. This is further complicated by the fact that finer grids need
to take more and smaller time steps than coarser grids. In Carpet’s time step
counting scheme, which is based on the finest grid time steps, this means that
the coarser grids are skipped in the remaining time steps. Thus the elegant re-
cursive scheme is flattened out. The scheduling bins in the main time evolution
loop are traversed in the following order:

1. Advance cctk_iteration

2. Loop over refinement levels, starting from coarsest:

3. If the current level needs to be treated at this iteration:
Calculate current cctk_time
Cycle time levels
PRESTEP
EVOL
POSTSTEP
9. Regrid

10. End loop over refinement levels

*® N o G

11. Restrict from finer to coarser grids

12. Loop over refinement levels, starting from coarsest:

13. If the current level needs to be treated at this iteration:
14. CHECKPOINT

15. ANALYSIS

16. OutputGH

17. End loop over refinement levels

The condition whether a refinement level needs to be treated at the current
iteration is different for the two loops. In the first loop, the coarse grids need
to be advanced before the finer grids, so the condition is iter mod stride = 1.
Here iter is the current iteration, and stride the stride of the current refinement
level, i.e. the factor by which the finest grid is finer than the current grid. In the
second loop above, the coarse grids need to be treated after the finer grids, so
that the condition reads iter mod stride = stride.

3.3 Calling scheduled routines

(See file Carpet/src/CallFunction.cc.) The process by which the scheduling
bins are traversed is different from the process which actually calls the routines
within the scheduling bins. The former has to do with mesh refinement, mak-
ing sure that the coarse and fine grids are evolved in the right order. The latter
has to do with treating multiple patches, i.e. with local mode and global mode
operations, as mentioned above.

In the function CallFunction, all the arguments that are passed to the
scheduled routines have to be set up. Additionally, the cGH structure has to
be filled in. Some fields in the cGH structure are always kept up-to-date dur-
ing the refinement level loops, such as the time step size and the grid spacing.
The file Carpet/src/helper. cc contains helper routines that allow easy loop-
ing over refinement levels and over grid patches. (Grid patches are also called
compoments in Carpet. The expression component seems to be confusing, so
that I switched to using patch instead. Some source code still reflects the old
conventsion.)

The function CallFunction first distinguishes between global mode func-
tions and local mode functions.

Global mode functions are called once (on each processor). They are passed
all the global data, such as cctk_gsh and cctk_delta_space, but none
of the local data, such as cctk_1sh or cctk_bbox. Grid functions are not
accessible, and they are passed as null pointers. However, grid scalars
and grid arrays are accessible. There is an untested gateway to directly
call local mode functions from global mode functions.

Local mode functions might be called several times (on each processor), once
for each grid patch that is assigned to this processor. They receive the
global data as well as data for a single grid patch. It is illegal to perform
global operations, such as synchronisation, interpolation, or reduction, in
local mode.

The distinction between global and local mode is only important for multi-
patch runs. For single-patch runs, the distinction does not exist.

Multi-patch runs are only necessary when there are more grid patches on a
refinement level than there are processors. This is normally not the case for
fixed mesh refinement. Things are different for adaptive mesh refinement,
which can create many refined regions.

3.4 Grid arrays and grid scalars

Grid scalars are implemented as zero-dimensional grid arrays with
DISTRIB=CONSTANT.

Grid arrays are implemented as grid functions, where each grid array group
has their own refinement hierarchy that consists of a single level only and is
never changed at run time. Grid arrays with less than 3 dimension are ex-
tended to have an extent of 1 (and no ghost zones) in the remaining dimen-
sions, so that all quantities in Carpet have 3 dimension DISTRIB=CONSTANT
grid arrays are implemented by internally enlarging the grid array in the z di-
rection, and then distributing this array onto the processors.

3.5 Flesh interfaces

The flesh has many interfaces that need to be filled in by a driver. These are
in particular all the routines that are overloaded in the SetupGH stage. Those
overloaded routines as well as other helper function are implemented in the
following files:

Carpet/src/Checksum.cc catching illegal changes to grid variables
Carpet/src/Comm.cc synchronisation, prolongation

Carpet/src/Cycle.cc time level handling

Carpet/src/Poison.cc catching uninitialised grid variables
Carpet/src/Restrict.cc restriction from finer to coarser grids
Carpet/src/Storage.cc enabling and disabling storage
Carpet/src/helpers.cc small low-level helper routines

Carpet/src/variables.cc the global variables that keep Carpet’s current
state (this is used instead of a GH extension — should probably be
changed some time)

Most of these files are fairly self-contained, and they mostly marshal the
actual work to CarpetLib.

I This is set by a compile-time constant and could be changed to allow for grid functions and
arrays with more than 3 dimensions.

3.6 Interfaces to other thorns

Some other thorns, mostly from the Carpet arrangement, do need to ac-
cess internal data of Carpet. Carpet keeps its internal state in global vari-
ables which are declared in Carpet/src/carpet_public.hh and defined in
Carpet/src/variables.cc. Entities that can be accessed from C are declared
in Carpet/src/carpet_public.h; some of these would be quite useful if they
were provided by the flesh.

3.7 Missing parts

Carpet does not handle staggered grids. Carpet does not provide cell-centered
refinement. Carpet always enables all storage. Carpet does not run efficiently
in parallel.

4 The workhorse

While Carpet provides the necessary interfaces to the flesh, the grunt work is
actually done by CarpetLib. This thorn grew from an earlier mesh refinement
of mine (Erik Schnetter) library that was independent of Cactus. It has in the
mean time been thoroughly changed, and it does not make sense any more to
use it independent of Cactus. CarpetLib contains of three major parts: a set
of generic useful helpers, the grid hierarchy and data handling, and interpo-
lation operators. Especially the latter could probably be separated out. While
CarpetLib is written in C++, the interpolators are written in FORTRAN77.

4.1 The helpers

The helpers correspond closely to Carpet’s terminology. A class vect<T,D>
provides small D-dimensional vectors of the type T, with all the operators that
one has learned to enjoy from Haskell and Fortran 90. A vect corresponds to
a grid point location. The class bbox<T,D> provides D-dimensional bounding
boxes using type T as indices. A bbox defines the location and shape of a grid
patch. Finally, bboxset<T,D> is a collection of bboxes. bboxsets are a useful
extension of the algebra of bboxes, as it closes the bbox algebra under the union
operation.

The files CarpetLib/src/defs.* defines useful small helpers and instan-
tiates the STL templates. CarpetLib/src/dist.* provides some routines
around MPL Carpet is closely coupled to MPI and does not work without it.

(Instead of inserting switches into Carpet to make it work without MPI, it
would make more sense to use a dummy version of MPL. PETSc does contain
such a dummy version. It is also easily possible to use a free MPI version such
as MPICH and use that to run on a single processor. However, I cannot see any
real need for making Carpet work without MPI.)

4.2 The grid hierarchy

The grid hierarchy is described by a set of classes. Except for the actual data,
all structures and all information is replicated on all processors.

gh is a grid hierarchy. It describes, for each refinement level, the location of
the grid patches. This gh does not contain ghost zones or prolongation
boundaries. There exists only one common gh for all grid functions.

dh is a data hierarchy. It extends the notion of a gh by ghost zones and prolon-
gation boundaries. The dh does most of the bookkeeping work, deciding
which grid patches interact with what other grid patches through syn-
chronisation, prolongation, restriction, and boundary prolongation. Un-
expected situations are often caught in one of dh’s many self checks. As
all grid functions have the same number of ghost zones, there exists also
only one dh for all grid functions.

th is a time hierarchy. It extends the notion of a gh by multiple time levels.
There exists one th per grid function group. This is a small class that
keeps track of the current time on the different refinement levels. (Note
that different refinement levels usually live at different times.)

gf is a grid function of a certain variable type. There is one instance of gf for
every grid function, whether it has storage or not. Each gf is associated
with a dh and a th and holds the storage for all levels and all patches.
It provides interfaces to access and modify these data, either directly or
through interpolation operators. gf also handles the data movement dur-
ing a regridding operation.

gef is an abstract superclass of gf which is independent of the variable type.
This is necessary in C++ to prevent egregious code duplication due to
class templates. Most of the routines in gf are actually declared in ggf,
and they either are virtual functions themselves, or they call virtual func-
tions that are declared in gf.

data is a container for a grid patch of a certain variable type. This is a glorified
multi-dimensional array that knows how to move between processors.
data is not only used to store the grid patches that make up a gf, it is
also used to move parts of patches around, e.g. for synchronisation or
prolongation.

gdata is an abstract superclass of data for much the same reasons as for ggf.
All information that is independent of the variable type is kept in gdata.

4.3 The interpolators

There are three kinds of “interpolators”: for prolongation, for restricting, and
for copying. The latter is only a glorified hyperslabber that moves parts of grid
patches between grid patches.

10

The interpolators used for restriction and prolongation are different from
those used for the generic interpolation interface in Cactus. The reason is
that interpolation is expensive, and hence the interpolation operators used for
restriction and prolongation have to be streamlined and optimised. As one
knows the location of the sampling points for the interpolation, one can calcu-
late the coefficients in advance, saving much time compared to calling a generic
interpolation interface.

4.3.1 Restriction

Restriction operators move data from finer to coarser grids. They are typically
called after both the coarse and the fine grid have been advanced to the same
time, and they overwrite parts of the coarse grid with information from the fine
grid, coupling the coarse grid evolution to the fine grid evolution. In principle,
there could be restriction operators with different orders of accuracy. Currently
only a single restriction operator is implemented that uses sampling.

The interface of the restriction operator (see file
CarpetLib/src/restrict_3d_real8.F77)is

subroutine restrict_3d_real8
(src, srciext, srcjext, srckext,
dst, dstiext, dstjext, dstkext,
srcbbox, dstbbox, regbbox)

integer srciext, srcjext, srckext

CCTK_REAL8 src(srciext,srcjext,srckext)

integer dstiext, dstjext, dstkext

CCTK_REAL8 dst(dstiext,dstjext,dstkext)

integer srcbbox(3,3), dstbbox(3,3), regbbox(3,3)

This interpolator assumes that space has three dimensions. The arrays src
and dst contain the source (fine) and destination (coarse) grid patches, stored
in Fortran order, as is customary in Cactus. The arrays src and dst have
the shapes (srciext,srcjext,srckext) and (dstiext,dstjext,dstkext),
respectively — this corresponds to the cctk_1sh field in the cGH structure.

The three bboxes describe the location and shape of the two arrays and of
the region that should be prolongated in the global grid point index system.
That is, while the two arrays src and dst are stored as dense arrays, they cor-
respond to grid patches which in general have non-unit strides in the global
index system. As prolongation is an operation that is performed between over-
lapping grids, the prolongation region is the same for both the coarse and the
fine grids.

A few constraints must hold for these data. For example, the shapes of
the arrays must be the same as the shapes defined by the bounding boxes; the
strides in the bounding boxes must differ by the refinement factor; the bound-
ing boxes must overlap, and the region’s bounding box must be contained in

11

the arrays bounding boxes, etc. Checking these constraints makes up about
three quarters of the restriction routine.

The bboxes themselves are here represented as Fortran arrays. Their mean-
ing is
bbox(:,1) lower boundary (inclusive)

bbox(:,2) upper boundary (inclusive)
bbox(:,3) stride

4.3.2 Prolongation

There are many prolongation operators implemented. They differ in the order
of their interpolation in space (first and third, or linear and cubic interpolation)
and in time (first and second, or linear and quadratic). The higher the order of
interpolation, the larger is the stencil, i.e. the more ghost zones and time levels
are necessary, and the more expensive the operation becomes.

The prolongation operators live in the files
CarpetLib/src/prolongate_3d.real8x.F77, and the file names indicate
their orders: ntl stands for n time levels, and on stands for an order n
interpolation in space (which uses a stencil that is #n 4+ 1 grid points wide).

Apart from taking more than one src array argument when using more
than one time level, the interface to the prolongation operator is equivalent to
that of the restriction operator described above.

5 Regridding, how and where and when

The thorn Carpet provides a routine RegisterRegridRoutine where one can
register a regridding routine. Such a regridding routine does not have to actu-
ally regrid anything, it only has to return the new desired grid hierarchy, i.e.
basically a description of a gh.

Thorn CarpetRegrid provides a user interface to the regridding routines in
Carpet. All it does is take a regridding specification from the user and translate
that into a gh. As usual, the parts where the computer has to listen to what a
human being intends are the most complicated.

As humans are usually more adept at getting used to computers than the
other way around, it is useful and probably necessary to get acquainted with
how Carpet thinks in order to make it do what is intended.

Carpet does not deal with real-valued coordinates. Carpet deals with in-
teger grid point locations only, and it counts grid points in terms of the finest
possible grid (not the finest currently existing grid). The finest possible grid is
defined by the maximum number of refinement levels set in Carpet. Chang-
ing this parameter will change the meaning of many other values in parameter
files, such as e.g. iteration numbers (termination, output). The only param-
eter that is specified in terms of the coarsest grid is the shape of the coars-
est grid in the global_* parameters of Carpet. I therefore suggest to set

12

max_refinement_levels to some large number (e.g. 10), and then not chang-
ing it while experimenting with other parameter settings.

Carpet also does not know about symmetries. When specifying the location
of a fine grid in terms of grid points, it is the responsibility of the user to place
the fine grid correctly. For that one has to take ghost zones and symmetry
zones into account.

It is also possible to specify the fine grid locations in terms of real-valued co-
ordinates. In this case, CarpetRegrid translates these into integer grid points.
A good translation is quite complicated, because it has to take many user ex-
pectations into account, such as the location of the origin, staggering with re-
spect to the origin, symmetry boundary conditions, the number of ghost zones
etc. The current translation is naive and leads to unexpected results in many
cases. A routine that does most of the time what the user expects while being
easy to understand is probably important for the ease of use of Carpet, but it
might be some time until it is written.

CarpetRegrid contains also a routine that measures the error, as provided
in a grid function, and the automatically decides where to refine. This is called
AMR (adaptive mesh refinement) if it works efficiently.

Much of CarpetRegrid is just slabbed together in an attempt to find out
what people need and expect. The thorn is a mess, and a complete rewrite
might be a good idea, once one knows what exactly the rewritten thorn should
do.

6 Random ramblings

Carpet uses the STL, because the STL provides very useful container classes
such as vectors, sets, and lists. Writing these abstract datatypes oneself does
not make sense in these times. It makes much more sense to politick computer
administrators to upgrade their software.

The STL and CarpetLib’s classes need to be instantiated explicitly. Several
compilers have several “automatic” schemes that handle all template issues
“just fine”. Except they don’t. One wants to select the following: No auto-
matic inclusion of .cc files, no automatic template instantiation at link time.
Instead, most templates are instantiated explicitly by CarpetLib. It is also nec-
essary to specify to instantiate used templates automatically. The explicit in-
stantiations of CarpetLib’s classes live in the .cc files corresponding to the
.hh file that define the templates. The STL templates are instantiated in the file
CarpetLib/src/defs.cc.

Carpet makes extensive use of the assert () macro in C. This is a quick and
easy way to ensure that a certain condition holds. Assert statements abort the
code if the condition does not hold. Although I try to provide useful error mes-
sages to the user, many unexpected cases are only caught deep inside Carpet
and manifest themselves as assertion failures. If you report an assertion fail-
ure, it is vitally important to remember theaccompanying file name and line

13

number. It would also be useful to extract from the core file a stack backtrace
and the values of the local variables of the current stack frame.

Using symmetry boundary conditions such as octant mode is currently
still awkward in Carpet. There are several reasons for this: CarpetRegrid
does not know about symmetries, and hence doesn’t take them into account
when choosing refinement regions. The symmetry conditions on the finer grid
might be different from the conditions on the coarser grids, and the symmetry
thorns cannot cope with this, so this situation must be avoided: one cannot
use avoid_origin=yes, because the finer grids all have avoid_origin=no due
to the vertex-centred refinement.

14

	Overview
	Terminology
	The driver
	Specifying the grid extent
	The timeline
	Initialisation
	Evolution

	Calling scheduled routines
	Grid arrays and grid scalars
	Flesh interfaces
	Interfaces to other thorns
	Missing parts

	The workhorse
	The helpers
	The grid hierarchy
	The interpolators
	Restriction
	Prolongation

	Regridding, how and where and when
	Random ramblings

