A user's perspective on getting started with Carpet

Ulrich Sperhake, Erik Schnetter

August 5, 2004

1 Introduction

These notes provide information on how to install and use the package Carpet as seen from a user's point of view. Carpet is a set of Thorns that provide fixed and to some extent adapted mesh refinement in the Cactus environment. As Cactus is a necessary requirement for using Carpet, these notes will inevitably contain some information about Cactus as well.

The reader should regard these notes as a first draft and the information represents the author's personal experiences rather than an exhaustive recipe on getting Carpet to work on an arbitrary given platform. In this sense I am hopeful that users as well as developers will continue to add to this document to make it more useful in the future.

Useful starting points for retrieving more detailed information on various issues are the project's web pages

http://www.cactuscode.org

http://www.carpetcode.org

2 Downloading the necessary packages

One first needs to download the Cactus version 4.0.13 (or alternatively for the more daring the development version). A more detailed description about how this is done can be found on the Cactus web page

http://www.cactuscode.org

Here we will summarize the required steps for downloading the complete Cactus-4.0.13 package. Change to a suitable directory on your system and log onto the Cactus cvs server via

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactus login

which will prompt you for a password which is **anon**. For the development version you will need to choose the directory /cactusdevcvs instead. Next check out the Cactus flesh which will create a directory Cactus under your current location

2 DOWNLOADING THE NECESSARY PACKAGES

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/cactus checkout Cactus

The rest of the cactus checkout is best done with the scripts that are shipped as part of Cactus. Change to that directory

cd Cactus

and enter the command

make checkout

That will give you various options to choose those parts of cactus you want to ckeckout. The default option *arrangements* is quite satisfactory for this purpose, so just hit return. You will then be given a list of (at the time of writing) 13 Cactus arrangements. Getting them all is a good idea, so choose once more the default option by pressing return. Depending on your internet connection this may take a while. Once all is downloaded you want to quit the script. This is not the default option, so type q and hit return.

In order to run the WaveToy example that comes with CarpetExtra (see below) you will need to check out Erik Schnetter's package TAT. First switch the directory to

cd arrangements

then checkout

cvs -d :pserver:cvs_anon@cvs.cactuscode.org:/arrangements checkout TAT

Again this may take a little time. Finally you will have to check out the Carpet package. As of mid April 2004 Carpet consists of 4 arrangements. Carpet contains all the necessary thorns you will need to run Carpet in the first place. The latest cutting edge thorns currently under development are located in CarpetDev. Do not be too surprised, though, if you find some the tools in there not to be fully functional. Packages not required to run Carpet, but probably useful for various purposes, such as scalar wave examples, are located in CarpetExtra. Remain in the arrangements directory for this purpose and log into the carpet cvs-server

cvs -d :pserver:cvs_anon@cvs.carpetcode.org:/home/cvs/carpet login

the password being once more anon. Next checkout Carpet by typing

cvs -d :pserver:cvs_anon@cvs.carpetcode.org:/home/cvs/carpet checkout Carpet cvs -d :pserver:cvs_anon@cvs.carpetcode.org:/home/cvs/carpet checkout CarpetExtra cvs -d :pserver:cvs_anon@cvs.carpetcode.org:/home/cvs/carpet checkout CarpetDev

3 DOCUMENTATION

3 Documentation

Documentation about Cactus, Carpet and their separate thorns comes in different forms. Most importantly you generate the UsersGuide and ReferenceManual for Cactus by going into the Cactus directory and typing

make UsersGuide
make ReferenceManual
make ArrangementDoc
make ThornDoc

(four separate commands). They will be created in postscript format under the directory

doc

relative to your current position, i.e. the Cactus directory. In addition each thorn may contain a subdirectory doc where the author (or users) may store additional documentation, typically in the form of a file documentation.tex.

4 Compilers

Before we indulge in using Cactus/Carpet, we have to address issues concerning the system you are working on. We begin with the compilers although we will not be able to deal with the subject in an exhaustive fashion. Basically these notes list our experiences with local machines (i.e. at Penn State) and may or may not be valid for your environment. Users are encouraged to add their experiences to this list.

At Penn State we largely work with the Intel compilers and the success of compilations has been found to depend sensitively on which version of the Intel compilers we are using. We will discuss some error messages encountered in the process of compiler testing below.

Free download (at least for Linux) of the Intel compiler (Fortran and C++) for non-commercial private or academic use is available from the web page

http://downloadfinder.intel.com/scripts-df/support_intel.asp

(click on Software Development, check for the compilers on your system and follow their instructions).

In case you haven't got root access, you may need to install the compiler locally or you will have to ask your sys-admin. Additional difficulties may arise in case you have no root access, i.e. install locally, while your sys-admin keeps some older version installed. In order to make sure that no conflict arises thereof (e.g. by linking against old versions of the library) the environment variable LD_LIBRARY_PATH must point to your local new version and not to the old version in /usr/local or wherever. You will probably end up with error messages such as undefined symbols ... otherwise. We decided to use the Intel compiler for both Fortran and C++ code. This was mainly a result of the current version of g++ not having the complete stl libraries that are made use of extensively in Carpet.

An important aspect of the Intel compilers is that they come in various different versions. Even the

5 LIBRARIES

same version number (say 7.1) comes in many different releases. You can check this by typing

ifc -V

and likewise for icc. Note in particular the date of build given in the form of 20030307Z. This corresponds to the March 2003 build of version 7.1 and caused difficulties for me. I encountered an error message like

/home/terminator/sperhake/src/2004_02_16_cactus-FMR/configs/test01/build/CarpetLib/
data.cc(173): error: no instance of overloaded function "dist::datatype"
matches the argument list

This can be rectified by switching to a newer release, at least the September 2003 build of version 7.1 (I'd recommend doing that for both the Fortran and the C++ compiler).

Some Cactus-Carpet users have reported problems, such as segmentation faults, by using the most recent versions of the Intel compilers, namely the March 2004 release of version 7.1 and the latest version 8.0. So far we have been using the former of these without encountering any difficulties, but you should probably stick to the December or September 2003 version of 7.1 if you can.

On my Gentoo Linux laptop, on the other hand, I experienced trouble with the September 2003 version of 7.1. I received error messages like

struct stat stat_bbox ... Incomplete components in structure not allowed

at compilation (I have forgotten the exact wording, but you'll recognize it). I managed to work around this by using the Intel Fortran and C++ compilers version 8.0 (build October 2003). As I have not done extensive code development on this laptop, though, I cannot really comment on the potential issues concerning the 8.0 version mentioned above.

Trouble may also arise from preprocessing in case you are using RedHat 7.3 (possibly also with other versions). This is essentially related to the treatment of white space in Fortran files. Should you encounter rather stupid error messages which clearly indicate that proper lines of Fortran have been corrupted by introducing white space (e.g. line breaks) at preprocessing, you should check your cpp and possibly download another (probably older) version. Details about this can be found on

http://www.cactuscode.org/Documentation/Architectures/Linux.html

which also gives a link to the preprocessor of the older RedHat 6.2 distribution. I downloaded that older version and it solved the preprocessing problems I encountered prior to that.

5 Libraries

As much as the compiler issue is strongly dependent on your platform, the extent to which you will have to install new libraries will depend on what your system administrator has already done for you. Again these notes cannot be exhaustive and rather focus on our experience. Feel free, as before, to add to our list.

5 LIBRARIES

5.1 HDF library

The HDF5 library is required for handling in/output in a particular binary data format. The use of these libraries in Cactus/Carpet is entirely optional, but in the end I found it easier to install the libraries than to convince my system that I do not want to use them. They should be useful in the long run anyway, so I recommend their installation unless they are already part of your system.

Let us start with the hdf5 libraries. The binary version can be obtained from

ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/hdf5-1.6.1/bin

As before I prefer compiling the source which you can get from

```
ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/hdf5-1.6.1/src
```

Again the instructions in the INSTALL file are straightforward. I included the C++ interface by setting the options

```
./configure --enable-cxx
```

and used the variables CPPFLAGS and LDFLAGS to ensure that the szip libraries were found (see INSTALL file). The Fortran interface did not work for me, so I did not enable that. In future versions of this document this issued may be readdressed. Finally you may need to point the environment variable LD_LIBRARY_PATH in your .bashrc or .cshrc to the directory containing the hdf5 library.

5.2 Parallelization

This subsection is relevant only if you plan to do multi processor runs (which you are rather likely to do, though, since it is a key feature of Cactus/Carpet). There are various packages that take care of parallelization, such as MPICH or lam and your machine will probably come equipped with one of these.

I have only had the need to install a message passing interface (MPI) on my laptop. It's a single processor laptop but you can emulate multi-processor runs none the less. Furthermore it appears to me that Carpet expects MPI at least in the form of a header file mpi.h, so you'd better install it. I chose the lam package for this purpose, so that is the only experience I have to report.

Installation of this package was straightforward on my Gentoo Linux laptop by typing

emerge lam-mpi

Depending on your Linux flavor installation may be done differently, for example using rpm. lam is started by typing

lamboot

and then executables can be started via

mpirun -np <n> <executable>

where $\langle n \rangle$ is the number of processors and $\langle executable \rangle$ the binary file (with full path) you want to run.

6 Creating a configuration

6.1 The configuration file

Eventually we can start writing a configuration file for a Cactus-Carpet project. In this configuration file the paths to various files, such as libraries and compilers need to be specified. Naturally these paths will differ from machine to machine. In this subsection I will assume the installation path

/usr/local/<name>

for most libraries, where <name> is the name of the library, e.g. hdf4 or szip. I further assume that each of these directories contains subdirectories lib and include which contain the libraries and header files. Similarly I presume that all compilers/preprocessors are installed in the directory

/usr/local/for_carpet/bin

This is, of course, not where they reside on your machine (nor on mine), but it'll be sufficient for this document and you will merely have to replace each of these paths with the correct one on your system.

We are now in the position to create the configuration file, say mycode_carpet.cfg (you can store that file wherever you think convenient). We will focus on the most important entries in this file only. Please refer to the Cactus documentation for a more detailed description. First we specify information about the compilers

F90	/usr/local/for_carpet/bin/ifc
F77	/usr/local/for_carpet/bin/ifc
CC	/usr/local/for_carpet/bin/icc
CXX	/usr/local/for_carpet/bin/icc
CPP	/usr/local/for_carpet/bin/cpp
FPP	/usr/local/for_carpet/bin/cpp

(the exact amount of white space between the variables F90, F77,... and their entries should not matter and you may even put in an = sign). Note that you do not need to specify the full path if your environment variable PATH points to the correct versions of the compilers/preprocessors already. Next we need to specify information about the message passing interface. In my case that was lam, so the next entries in my file mycode_carpet.cfg are

MPI	LAM
LAM_INC_DIR	/usr/include
LAM_LIB_DIR	/usr/lib

In case you are using a different MPI package refer to the Cactus users guide to find the correct entry for MPI. Make sure that you specify the correct paths for the corresponding header files and libraries (ask your sys-admin if necessary).

6 CREATING A CONFIGURATION

Next we specify the libraries to be included in the compilation. For the 7.1 version of the Intel compilers in combination with lam we found the following to work fine

LIBS crypt lapack blas g2c z BINDF90 CEPCF90 F90 IEPCF90 PEPCF90 POSF90 cprts cxa guide imf intrins irc ircmt ompstub svml unwind X11 ieeeio df m mpi lam pmpi

(all in one line). It goes without saying that all these libraries must be installed on your machine. Most of them probably are and the installation of some that may not is described in more detail above in Sec. 5.

The paths to some of these libraries may not be known automatically by the linker and needs to be specified separately. This is done with the variable LIBDIRS which I had to set to

LIBDIRS /usr/local/intel/compiler70/ia32/lib /usr/X11R6/lib /usr/local/IEEEI0/lib /usr/local/hdf4/lib /usr/lib/gcc-lib/i386-redhat-linux/egcs-2.91.66

(again on all in one line). As before you will have to adjust this line to your demands. Finally I set

PTHREADS yes

though I am not sure what this is exactly doing.

6.2 make-config

In order to create a configuration change into the Cactus directory and type

```
make <name>-config options=<config-file>
```

where you can choose an arbitrary <name> for your configuration and <config-file> is the file (with full path) created in the previous subsection.

6.3 Creating a thornlist

Next you will need to generate a thornlist, i.e. a list of all those thorns you want to compile. This is done in the Cactus directory by typing

```
make < name > -thornlist
```

where $\langle name \rangle$ must be the same as in setting up the configuration. This command will search all arrangements for all thorns and eventually prompt you whether you want to modify the list. As all thorns are activated by default you do want to modify the list and type *yes* and hit return. This will open an editor session where you can unselect thorns by putting a hash '#' at the beginning of the line. Unselect all thorns in this way except for the following

CactusBase/Boundary

6 CREATING A CONFIGURATION

CactusBase/CartGrid3D CactusBase/CoordBase CactusBase/IOBasic CactusBase/IOUtil CactusBase/LocalInterp CactusBase/SymBase CactusBase/Time Carpet/Carpet Carpet/CarpetIOASCII Carpet/CarpetIOHDF5 Carpet/CarpetInterp Carpet/CarpetLib Carpet/CarpetReduce Carpet/CarpetRegrid Carpet/CarpetSlab CarpetExtra/IDScalarWave CarpetExtra/WaveToyF77

Before you compile, you need to apply one modification to the file

arrangements/CarpetExtra/WaveToyF77/configuration.ccl

namely remove the entry Cart3d from the list of REQUIRED thorns. This thorn is actually required but, for some reason unknown to me, must not be mentioned here. It gave an error message complaining that there is no thorn Cart3d. Having applied this modification you can start compiling by typing

make < name >

There is no guarantee, but at least you have a chance of compiling through without error messages (do not be intimidated by the odd warning, though). In case you still cannot compile, please add your wisdom to this document to help future users.

6.4 Running the first application: WaveToyF77

If you've gotten this far, you should be able to run your first simulation with mesh refinement. Change to some convenient directory for this purpose and copy over from relative to the main Cactus directory the parameter file

arrangements/CarpetExtra/WaveToyF77/par/wavetoyf77_rad_full_rl2.par

You will need to adjust this parameter file a little to get it running (I am not aware of a WaveToyparameter file that does not require such minor modification). First add to the first line beginning with ActiveThorns the thorns Slab CoordBase SymBase (that is within the quotes). Finally you should be able to run this example by typing something like

6 CREATING A CONFIGURATION

mpirun -np 1 ~/Cactus/exe/cactus-<name> wavetoyf77_rad_full_rl2.par

where <name> is again the name of the configuration above. In case you do not have your main Cactus directory under your home directory you will need to adjust that part in the command. By running this command you should obtain a directory wavetoyf77_rad_full_rl2 with the resulting data in ascii format. You can check for example the file

wavetoyf77_rad_full_rl2/phi.x.asc

(relative to the directory where you ran the code) which lists the data on the separate refinement levels.