
DOMAIN DECOMPOSITION IN CARPET:
REGRIDDING AND DETERMINATION OF THE COMMUNICATION

SCHEDULE

ERIK SCHNETTER(1,2)

ABSTRACT. This text describes the algorithms that Carpet [?, ?] uses for regrid-
ding, domain decomposition, and setting up the communication schedule. It is
intended for readers interested more details than a casual user would need. This
text explains the concepts that Carpet uses internally to describe the grid hierarchy
and to ensure its consistency.

1. INTRODUCTION

Setting up a grid hierarch (“regridding”) is in Carpet handled by three different
entities: Carpet itself decides the extent of the domain, the type of outer bound-
ary conditions, and distributes the domain onto processors; a regridding thorn is
responsible for deciding the shape of the grid hierarchy, and CarpetLib handles the
details and actually manages the data. (Technically speaking, it is the regridding
thorn which has to do the domain decomposition; however, it can simply call a
convenient helper routine in Carpet for this task.)

This separation leaves the decision on the shape of the grid hiearchy to a thorn
which can be replaced or augmented as necessary. All handling of data happens
in CarpetLib, which is thus the only entity which needs to be optimised for speed.
Finally, Carpet retains the overview over the regridding process.

In the following we assume that there is a single patch (block) which contains
a mesh refinement hierarchy. If there are multiple patches, then each patch is con-
ceptually handled independently. Certain conditions may have to be satisfied if a
refined mesh touches an inter-patch boundary, but these are not discussed here.

We assume that the domain has D spatial dimensions, usually D = 3.

2. DOMAIN DESCRIPTION

We assume that boundary location and boundary discretisation are set up via
CoordBase. This is necessary since other methods do not allow specifying suffi-
cient details to handle e.g. refined regions intersecting mesh refinement bound-
aries. Below we give an overview over the information that needs to be specified
to describe a boundary. See the CoordBase thorn guide for details.

Date: March 9, 2008.
Email: mailto:schnetter@cct.lsu.edu.
Web: http://www.cct.lsu.edu/.
(1) Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA.
(2) Department of Physics and Astronomy, Louisiana State University, Baton Rouge LA, USA.

1

mailto:schnetter@cct.lsu.edu
http://www.cct.lsu.edu/


DOMAIN DECOMPOSITION IN CARPET 2

The extent of the overall simulation domain is described in terms or real-valued
coordinates. The domain is cuboidal, i.e., it can be described in terms of two vec-
tors xi

min and xi
max.

The type of boundary conditions for each of the 2D faces is described by three
quantities:

• the total number of boundary points,
• how many of these points are outside of the domain boundary,
• whether the boundary is staggered with respect to the domain boundary,

or whether one of the boundary points is located on the domain boundary.

� [TODO: Show the relevant figures from the CoordBase thorn guide.]
The extent of the domain Li := xi

max − xi
min must be commensurate with the

coarse grid spacing hi. This means that Li must be a multiple of hi, modulo the
fact that the boundary may be staggered.

An outer boundary condition can either be a physical boundary condition, such
as e.g. a Direchlet condition, or a symmetry boundary condition, such as e.g. a
reflection symmetry. This distinction is irrelevant for Carpet. Both kinds of outer
boundary conditions are applied by thorns which are scheduled in the appropriate
way.

The main distinction between an outer boundary point and an interior point from
Carpet’s point of view is that an outer boundary point is not evolved in time. In-
stead, the value of boundary points must be completely determined by the value
of interior points. (This is clearly the case for Direchlet or symmetry boundary con-
ditions.) The reason for this distinction is that Carpet cannot fill outer boundary
points on refined grids via interpolation, because this requires off-centred interpo-
lation stencils which are not implemented at the moment. Therefore, Carpet does
not fill any outer boundary points through interpolation.

� [TODO: We should introduce mesh refinement and parallelisation before this para-
graph.] If the refined region abuts the outer boundary, then outer boundary points
can also be refinement boundary points. Carpet does not fill these outer bound-
ary points through synchronisation (prolongation) either. This requires that the
outer boundary condition is applied after every synchronisation. This is usally
automatically the case when using the Cactus boundary condition selection mech-
anism, i.e., when the group ApplyBCs is scheduled. Synchronising outer boundary
points would be possible, but this is not done so that refinement boundaries and
inter-processor boundaries are treated in the same way.

3. REGRIDDING

A regridding thorn, such as e.g. CarpetRegrid or CarpetRegrid2, sets up the
grid hierarchy. The grid hierarchy consists of several refinement levels, and each re-
finement level consists of several refined regions. A refined region is a cuboid set
of grid points which is assigned to a particular processor. (The “refined regions”
which are specified e.g. in a parameter file are broken up during domain is de-
composition into a set of regions, so that each region is assigned to exactly one
processor.) There can be zero or multiple regions per processor, and differnet pro-
cessors may own different numbers of regions. Each face of a region is either an
outer or an internal boundary. Refined regions are described by the data structure
region t, which is declared in CarpetLib/src/region.hh.



DOMAIN DECOMPOSITION IN CARPET 3

The refined regions on one level may not overlap. (If they do not touch each
other or the outer boundary, then they usually even have to keep a certain mini-
mum distance, as described below.)

The “semantics” (the result obtained in a simulation) of a grid hierarchy is inde-
pendent of the number of refined regions, or of the processors which are assigned
to them. The only relevant quantity is the set of refined grid points, i.e., the con-
junction of all refined regions. When running on more processors, then regions
will be split up so that there are more and smaller regions.

The assignment of regions to processors is handled during regridding because
it affects performance. When there are only few processors available, then it may
be more efficient to use fewer regions. Combining regions may require some fill-
in. � [TODO: Show figure.] No current regridding thorn in Carpet offers this at
the moment; currently, the set of refined points is independent of the number of
processors.

Each face of a refined region is either an interior or an outer boundary face.
Carpet adds no ghost or buffer zones to outer boundary faces, and marks this face
as outer boundary when calling thorns. An outer boundary face must extend up
to the outermost outer boundary point, since otherwise thorns will apply the outer
boundary conditions incorrectly. The regridding thorn has to ensure this property.
Faces which are not outer boundary faces must be sufficiently far away from outer
boundaries, so that any ghost or buffer zones which are added to that face do not
intersect the outer boundary. � [TODO: Show figure.] The regridding thorn also
has to ensure this property.

Each face which is not an outer boundary face is either an inter-processor or a re-
finement boundary face. Inter-processor faces have no buffer zones, and the ghost
zones can be filled in completely from other refined regions on the same level.
Refinement boundary faces do have buffer zones, and at least some of the ghost
zones must be filled via prolongation from the next coarser grid. It is possible to
have faces which are partly an inter-processor boundary and partly a refinement
boundary. These are counted as and handled as refinement boundaries, although
some of the ghost zones may still be filled via synchronisation. (Any grid points
which can be filled via synchronisation are always also filled via synchronisation.)
This is explained in more detail below.

As described below, ghost zones are added at the outside of regions by Carpet.
Buffer zones need to be taken into account by the regridding thorn, most likely by
extending the regined regions appropriately. (In terms of previous terminology:
buffer zones are always “inner” buffer zones; “outer” buffer zones do not exist
any more. However, if they are added by the regridding thorn, they do not need
to be taken into account when specifying the refinement hierarchy in a parameter
file – this depends on the regridding thorn. � [TODO: CarpetRegrid2 does this,
CarpetRegrid does this not.]) Carpet assumes buffer zones at all faces which are
marked as refinement boundaries.

It is the responsibility of the regridding thorn to mark outer boundaries and re-
finement boundaries appropriately. If the outer boundary mark is chosen wrongly,
then the simulation is inconsistent, since the outer boundary condition may be ap-
plied at a the wrong location, or the outer boundary may be filled by interpolation
which is less accurate. Depending on the number of boundary points and stencil
sizes, this may or may not be detected later by self-consistency checks.



DOMAIN DECOMPOSITION IN CARPET 4

4. ZONING

This section defines the algorithm which Carpet uses to define which grid
points are defined by what action. This algorithm is codified in dh.cc. Since the
code in dh.cc is tested, it should be assumed to be correct where it differs with
this description. This algorithm is applied to every refinement level.

Grid arrays are handled in the same way as grid functions, except that there
are no refined regions. This may seem like overkill at first, but in fact it greatly
simplifies the implementation since grid arrays have (almost) only a subset of the
capabilities of grid functions.

4.1. Domain. Let dom be the simulation domain. Let domact be the set of grid
points which are evolved in time, and which is required to be cuboidal and not
empty.1 (An empty region is also counted as cuboidal.)

Each face has a layer of outer boundary points. Let domob be the set of these
layers. We require that all values in domob can be calculated from the values in
domact. Let domext := domact ∪ domob. It follows that domext is cuboidal and not
empty.

� [TODO: Show figure.]
The following properties hold for dom:
• domact is cuboidal and not empty
• domob is a possibly empty layer around domact
• domob has a width of nboundaryzones as obtained from
GetBoundarySpecification

• domact ∩ domob = ∅
• domext = domact ∪ domob is cuboidal and not empty
• domext has the size cctk gsh

For completeness, one can define dombnd = dombu f = ∅, and domint =
domown = domact. Then the same relations hold for dom as for reg below.

4.2. Refined regions. Let reg be a refined region. Let regint be its interior, which
is required to be cuboidal and not empty. regint includes buffer zones and outer
boundary points. We require that regint ⊆ domext.

There may be other refined regions reg′ on the same level. We require that
∀reg′ 6=reg : regint ∩ regint′ = ∅.

Each face of regint which is not an outer boundary face has a layer of
cctk nghostzones ghost zones added to it. (These are what Cactus calls “ghost
zones”, but note that not all ghost zones are filled via synchronisation.) Let
regghost be the set of these layers. We require that regghost ⊆ domact. Let
regext := regint ∪ regghost be the interior with the ghost zones added. It follows
that regext is cuboidal and not empty. We require that regext ⊆ domext.

� [TODO: Show figure.]
On each face of regext, the outermost layer of nboundaryzones points are not

communicated. Let regcomm be the set of communicated points. The regcomm ⊆
regext, we require it to be not empty, and we require that recomm ⊆ domact.

Let regob := regext − regcomm be the set of outer boundary points. It follows
that regob ⊆ domob.

1While grid functions cannot be empty, domact for grid arrays can be empty.



DOMAIN DECOMPOSITION IN CARPET 5

The owned region regown is the interior region, extended up to the boundary,
i.e., regint with a layer of nboundaryzones points added to it at all outer bound-
ary faces. Thus regown is cuboidal, and we require it to be not empty. It is also
regown ⊆ domact, and regown ⊆ regext. It is also ∀reg′ 6=reg : regown ∩ regown = ∅.

Let regbnd := regcomm − regown. Then regbnd ⊆ domact. � [TODO: Does
this follow, or is this a requirement?] These points are filled via synchronisation
� [TODO: Is this so? Is this always via inter-processor communiocation, or also via
prolongation?], and they cannot be too close to the outer boundary.

Let regbu f be the set of grid points which have a distance less than
buffer width from the boundary of the conjunction of all active grid points. Then
regbu f ⊆ regown. Let regact := regown − regbu f . Then also regact ⊆ regown.
In general, regact is not cuboidal. regact can be empty. � [TODO: This may be
controversial.]

� [TODO: Show figure.]
Let regsync := regbnd ∩ allown be the boundary points which can be filled via

synchronisation. Note that regbnd ∩ regown = ∅ by construction, which means
that a region cannot synchronise from itself. Note that outer boundary points are
synchronised for backward compatibility.

Let regre f := (regbnd− regsync) ∪ regbu f be the set of all points which need to
be filled via prolongation. Note that regre f ∩ regsync = ∅, which means that no
point is both synchronised and prolongated. Note also that regre f ∩ regob = ∅,
which means that no outer boundary point is prolongated.

� [TODO: Show figure.]
The following properties hold for reg:
• regint ⊆ domext is cuboidal and not empty
• regghost is a layer on the outside of regint on those faces which are not

marked “outer boundary”
• regext = regint ∪ regghost ⊆ domext is cuboidal and not empty
• recgomm ⊆ domact
• regob ⊆ domob
• regown ⊆ domact is cuboidal and not empty
• ∀reg′ 6=reg : regown ∪ regown′ = ∅
• regbnd is a layer around regown on those faces which are not marked

“outer boundary”
• regbu f is a layer around regact on those faces which are marked “refine-

ment boundary”
• regsync are those boundary points which can be filled via synchronisation
• regre f are those boundary or buffer points which are filled via prolonga-

tion
regint is not important for Carpet’s working, but only for Cactus. Since Cactus has
no notion of outer boundaries, we introduce regint, which corresponds to regown,
but includes outer boundary points.

5. ALGORITHMIC DETAILS

It is straightforward to extend or shrink a cuboidal region C by a layer of grid
points with a given width. It is also straightforward to extend an arbitrary region
R, which is internally represented as a set of non-overlapping cuboidal regions
Ci. One sets ext[R] :=

⋃
ext[Ci]. The individual extended cuboidal regions ext[Ci]



DOMAIN DECOMPOSITION IN CARPET 6

will overlap in general, but this overlap is handled correctly by the operator
⋃

.
However, there is no straightforward way to shrink an arbitrary region R. One
possibility is to extend the complement of R instead.

The layer of buffer zones allbu f can be calculated in the following way.
Let allown :=

⋃
regown as above be the set of all refined grid points. Then

domact − allown is the set of all not-refined grid points in the domain. In or-
der to handle the outer boundary of the domain correctly, we define domlarge
to be domact, sufficiently enlarged in each direction, i.e., enlarged at least by the
number of buffer zones. Let notown := domlarge − allown be the complement
of allown. Let notact be notown, enlarged by the number of buffer zones. Then
allbu f := allown− notact.

APPENDIX A. TERMINOLOGY

� [TODO: To be filled in]

Block:: See map.
Buffer zone:: ???
Component:: ???
Ghost zone:: ???
Grid hierarchy:: ???
Inter-processor boundary:: ???
Map:: ???
Outer boundary:: ???
Patch:: See map.
Physical boundary:: ???
Refinement boundary:: ???
Refinement level:: ???
Region:: ???
Regridding:: ???
Symmetry boundary:: ???


