
Darcs 1.0.7pre1 (stable branch)

Darcs

David Roundy

February 28, 2006



2



Contents

1 Introduction 7
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Switching from CVS . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Switching from arch . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Building darcs 15
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Building on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Building on Microsoft Windows . . . . . . . . . . . . . . . . . . . 16
2.4 Building from tarball . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Building darcs from the repository . . . . . . . . . . . . . . . . . 17
2.6 Building darcs with git . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Submitting patches to darcs . . . . . . . . . . . . . . . . . . . . . 18

3 Getting started 19
3.1 Creating your repository . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Making changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Making your repository visible to others . . . . . . . . . . . . . . 20
3.4 Getting changes made to another repository . . . . . . . . . . . . 21
3.5 Moving patches from one repository to another . . . . . . . . . . 21

3.5.1 All pulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Send and apply manually . . . . . . . . . . . . . . . . . . 21
3.5.3 Push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.4 Push —apply-as . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.5 Sending signed patches by email . . . . . . . . . . . . . . 23

3.6 Reducing disk space usage . . . . . . . . . . . . . . . . . . . . . . 25
3.6.1 Linking between repositories . . . . . . . . . . . . . . . . 26
3.6.2 Alternate formats for the pristine tree . . . . . . . . . . . 26

4 Configuring darcs 29
4.1 prefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Environment variables . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Highlighted output . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Character escaping and non-ASCII character encodings . . . . . 34

3



4 CONTENTS

5 Best practices 37
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Creating patches . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Keeping or discarding changes . . . . . . . . . . . . . . . 38
5.2.3 Unrecording changes . . . . . . . . . . . . . . . . . . . . . 38
5.2.4 Special patches and pending . . . . . . . . . . . . . . . . . 39

5.3 Using patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Branches: just normal repositories . . . . . . . . . . . . . 40
5.3.3 Moving patches around—no versions . . . . . . . . . . . . 41
5.3.4 Tags—versions . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.5 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.6 Resolving conflicts . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Distributed development with one primary developer . . . . . . . 43
5.5 Development by a small group of developers in one office . . . . . 44

6 Darcs commands 45
6.1 Common options to darcs commands . . . . . . . . . . . . . . . . 46
6.2 Options apart from darcs commands . . . . . . . . . . . . . . . . 52
6.3 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 darcs help . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Creating repositories . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 darcs initialize . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 darcs get . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 darcs put . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Modifying the contents of a repository . . . . . . . . . . . . . . . 55
6.5.1 darcs add . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5.2 darcs remove . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5.3 darcs mv . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.5.4 darcs replace . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.6 Working with changes . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6.1 darcs record . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.6.2 darcs pull . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6.3 darcs push . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.6.4 darcs send . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.5 darcs apply . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Seeing what you’ve done . . . . . . . . . . . . . . . . . . . . . . . 71
6.7.1 darcs whatsnew . . . . . . . . . . . . . . . . . . . . . . . . 71
6.7.2 darcs changes . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.8 More advanced commands . . . . . . . . . . . . . . . . . . . . . . 73
6.8.1 darcs tag . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.8.2 darcs setpref . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.8.3 darcs check . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.8.4 darcs optimize . . . . . . . . . . . . . . . . . . . . . . . . 76

6.9 Undoing, redoing and running in circles . . . . . . . . . . . . . . 78



CONTENTS 5

6.9.1 darcs amend-record . . . . . . . . . . . . . . . . . . . . . 78
6.9.2 darcs rollback . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9.3 darcs unrecord . . . . . . . . . . . . . . . . . . . . . . . . 79
6.9.4 darcs unpull . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.9.5 darcs obliterate . . . . . . . . . . . . . . . . . . . . . . . . 82
6.9.6 darcs revert . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.9.7 darcs unrevert . . . . . . . . . . . . . . . . . . . . . . . . 83

6.10 Advanced examination of the repository . . . . . . . . . . . . . . 84
6.10.1 darcs diff . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.10.2 darcs annotate . . . . . . . . . . . . . . . . . . . . . . . . 85

6.11 Rarely needed and obscure commands . . . . . . . . . . . . . . . 86
6.11.1 darcs resolve . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.11.2 darcs dist . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.11.3 darcs trackdown . . . . . . . . . . . . . . . . . . . . . . . 87
6.11.4 darcs repair . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Theory of patches 89
A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Applying patches . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3.1 Hunk patches . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3.2 Token replace patches . . . . . . . . . . . . . . . . . . . . 90

A.4 Patch relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 Commuting patches . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5.1 Composite patches . . . . . . . . . . . . . . . . . . . . . . 91
A.5.2 How merges are actually performed . . . . . . . . . . . . . 93
A.5.3 File patches . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.5.4 Hunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.6 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.7 Patch string formatting . . . . . . . . . . . . . . . . . . . . . . . 97

B DarcsRepo format 99

C The GNU General Public License 101
C.1 Appendix: How to Apply These Terms to Your New Programs . 107



6 CONTENTS



Chapter 1

Introduction

Darcs is a revision control system, along the lines of CVS or arch. That means
that it keeps track of various revisions and branches of your project, allows
for changes to propagate from one branch to another. Darcs is intended to be
an “advanced” revision control system. Darcs has two particularly distinctive
features which differ from other revision control systems: 1) each copy of the
source is a fully functional branch, and 2) underlying darcs is a consistent and
powerful theory of patches.

Every source tree a branch The primary simplifying notion of darcs is
that every copy of your source code is a full repository. This is dramatically
different from CVS, in which the normal usage is for there to be one central
repository from which source code will be checked out. It is closer to the notion
of arch, since the ‘normal’ use of arch is for each developer to create his own
repository. However, darcs makes it even easier, since simply checking out the
code is all it takes to create a new repository. This has several advantages,
since you can harness the full power of darcs in any scratch copy of your code,
without committing your possibly destabilizing changes to a central repository.

Theory of patches The development of a simplified theory of patches is
what originally motivated me to create darcs. This patch formalism means that
darcs patches have a set of properties, which make possible manipulations that
couldn’t be done in other revision control systems. First, every patch is invert-
ible. Secondly, sequential patches (i.e. patches that are created in sequence,
one after the other) can be reordered, although this reordering can fail, which
means the second patch is dependent on the first. Thirdly, patches which are
in parallel (i.e. both patches were created by modifying identical trees) can be
merged, and the result of a set of merges is independent of the order in which
the merges are performed. This last property is critical to darcs’ philosophy, as
it means that a particular version of a source tree is fully defined by the list of
patches that are in it, i.e. there is no issue regarding the order in which merges

7



8 CHAPTER 1. INTRODUCTION

are performed. For a more thorough discussion of darcs’ theory of patches, see
Appendix A.

A simple advanced tool Besides being “advanced” as discussed above, darcs
is actually also quite simple. Versioning tools can be seen as three layers. At
the foundation is the ability to manipulate changes. On top of that must be
placed some kind of database system to keep track of the changes. Finally, at
the very top is some sort of distribution system for getting changes from one
place to another.

Really, only the first of these three layers is of particular interest to me, so
the other two are done as simply as possible. At the database layer, darcs just
has an ordered list of patches along with the patches themselves, each stored
as an individual file. Darcs’ distribution system is strongly inspired by that
of arch. Like arch, darcs uses a dumb server, typically apache or just a local
or network file system when pulling patches. darcs has built-in support for
using ssh to write to a remote file system. A darcs executable is called on the
remote system to apply the patches. Arbitrary other transport protocols are
supported, through an environment variable describing a command that will run
darcs on the remote system. See the documentation for DARCS APPLY FOO
in Chapter 4 for details.

The recommended method is to send patches through gpg-signed email mes-
sages, which has the advantage of being mostly asynchronous.

Keeping track of changes rather than versions In the last paragraph, I
explained revision control systems in terms of three layers. One can also look
at them as having two distinct uses. One is to provide a history of previous
versions. The other is to keep track of changes that are made to the repository,
and to allow these changes to be merged and moved from one repository to
another. These two uses are distinct, and almost orthogonal, in the sense that
a tool can support one of the two uses optimally while providing no support for
the other. Darcs is not intended to maintain a history of versions, although it is
possible to kludge together such a revision history, either by making each new
patch depend on all previous patches, or by tagging regularly. In a sense, this is
what the tag feature is for, but the intention is that tagging will be used only to
mark particularly notable versions (e.g. released versions, or perhaps versions
that pass a time consuming test suite).

Other revision control systems are centered upon the job of keeping track of
a history of versions, with the ability to merge changes being added as it was
seen that this would be desirable. But the fundamental object remained the
versions themselves.

In such a system, a patch (I am using patch here to mean an encapsulated
set of changes) is uniquely determined by two trees. Merging changes that are
in two trees consists of finding a common parent tree, computing the diffs of
each tree with their parent, and then cleverly combining those two diffs and
applying the combined diff to the parent tree, possibly at some point in the



1.1. FEATURES 9

process allowing human intervention, to allow for fixing up problems in the
merge such as conflicts.

In the world of darcs, the source tree is not the fundamental object, but
rather the patch is the fundamental object. Rather than a patch being defined
in terms of the difference between two trees, a tree is defined as the result
of applying a given set of patches to an empty tree. Moreover, these patches
may be reordered (unless there are dependencies between the patches involved)
without changing the tree. As a result, there is no need to find a common parent
when performing a merge. Or, if you like, their common parent is defined by the
set of common patches, and may not correspond to any version in the version
history.

One useful consequence of darcs’ patch-oriented philosophy is that since a
patch need not be uniquely defined by a pair of trees (old and new), we can have
several ways of representing the same change, which differ only in how they com-
mute and what the result of merging them is. Of course, creating such a patch
will require some sort of user input. This is a Good Thing, since the user creating
the patch should be the one forced to think about what he really wants to change,
rather than the users merging the patch. An example of this is the token replace
patch (See Section A.3.2). This feature makes it possible to create a patch, for
example, which changes every instance of the variable “stupidly named var” to
“better var name”, while leaving “other stupidly named var” untouched. When
this patch is merged with any other patch involving the “stupidly named var”,
that instance will also be modified to “better var name”. This is in contrast to
a more conventional merging method which would not only fail to change new
instances of the variable, but would also involve conflicts when merging with
any patch that modifies lines containing the variable. By more using additional
information about the programmer’s intent, darcs is thus able to make the pro-
cess of changing a variable name the trivial task that it really is, which is really
just a trivial search and replace, modulo tokenizing the code appropriately.

The patch formalism discussed in Appendix A is what makes darcs’ approach
possible. In order for a tree to consist of a set of patches, there must be a
deterministic merge of any set of patches, regardless of the order in which they
must be merged. This requires that one be able to reorder patches. While I don’t
know that the patches are required to be invertible as well, my implementation
certainly requires invertibility. In particular, invertibility is required to make
use of Theorem 2, which is used extensively in the manipulation of merges.

1.1 Features

Record changes locally In darcs, the equivalent of a cvs “commit” is called
record, because it doesn’t put the change into any remote or centralized reposi-
tory. Changes are always recorded locally, meaning no net access is required in
order to work on your project and record changes as you make them. Moreover,
this means that there is no need for a separate “disconnected operation” mode.



10 CHAPTER 1. INTRODUCTION

Interactive records You can choose to perform an interactive record, in
which case darcs will prompt you for each change you have made and ask if you
wish to record it. Of course, you can tell darcs to record all the changes in a
given file, or to skip all the changes in a given file, or go back to a previous
change, or whatever. There is also an experimental graphical interface, which
allows you to view and choose changes even more easily, and in whichever order
you like.

Unrecord local changes As a corollary to the “local” nature of the record
operation, if a change hasn’t yet been published to the world—that is, if the local
repository isn’t accessible by others—you can safely unrecord a change (even if
it wasn’t the most recently recorded change) and then re-record it differently,
for example if you forgot to add a file, introduced a bug or realized that what
you recorded as a single change was really two separate changes.

Interactive everything else Most darcs commands support an interactive
interface. The “revert” command, for example, which undoes unrecorded changes
has the same interface as record, so you can easily revert just a single change.
Pull, push, send and apply all allow you to view and interactively select which
changes you wish to pull, push, send or apply.

Test suites Darcs has support for integrating a test suite with a repository.
If you choose to use this, you can define a test command (e.g. “make check”)
and have darcs run that command on a clean copy of the project either prior
to recording a change or prior to applying changes—and to reject changes that
cause the test to fail.

Any old server Darcs does not require a specialized server in order to make
a repository available for read access. You can use http, ftp, or even just a plain
old ssh server to access your darcs repository.

You decide write permissions Darcs doesn’t try to manage write access.
That’s your business. Supported push methods include direct ssh access (if
you’re willing to give direct ssh access away), using sudo to allow users who
already have shell access to only apply changes to the repository, or verification
of gpg-signed changes sent by email against a list of allowed keys. In addition,
there is good support for submission of patches by email that are not automat-
ically applied, but can easily be applied with a shell escape from a mail reader
(this is how I deal with contributions to darcs).

Symmetric repositories Every darcs repository is created equal (well, with
the exception of a “partial” repository, which doesn’t contain a full history. . . ),
and every working directory has an associated repository. As a result, there is
a symmetry between “uploading” and “downloading” changes—you can use the
same commands (push or pull) for either purpose.



1.2. SWITCHING FROM CVS 11

CGI script Darcs has a CGI script that allows browsing of the repositories.

Portable Darcs runs on UNIX (or UNIX-like) systems (which includes Mac OS X)
as well as on Microsoft Windows.

File and directory moves Renames or moves of files and directories, of
course are handled properly, so when you rename a file or move it to a different
directory, its history is unbroken, and merges with repositories that don’t have
the file renamed will work as expected.

Token replace You can use the “darcs replace” command to modify all oc-
currences of a particular token (defined by a configurable set of characters that
are allowed in “tokens”) in a file. This has the advantage that merges with
changes that introduce new copies of the old token will have the effect of chang-
ing it to the new token—which comes in handy when changing a variable or
function name that is used throughout a project.

Configurable defaults You can easily configure the default flags passed to
any command on either a per-repository or a per-user basis or a combination
thereof.

1.2 Switching from CVS

Darcs is refreshingly different from CVS.
CVS keeps version controlled data in a central repository, and requires that

users check out a working directory whenever they wish to access the version-
controlled sources. In order to modify the central repository, a user needs to
have write access to the central repository; if he doesn’t, CVS merely becomes
a tool to get the latest sources.

In darcs there is no distinction between working directories and repositories.
In order to work on a project, a user makes a local copy of the repository he
wants to work in; he may then harness the full power of version control locally.
In order to distribute his changes, a user who has write access can push them
to the remote repository; one who doesn’t can simply send them by e-mail in a
format that makes them easy to apply on the remote system.

Darcs commands for CVS users Because of the different models used by
cvs and darcs, it is difficult to provide a complete equivalence between cvs and
darcs. A rough correspondence for the everyday commands follows:

cvs checkout
darcs get

cvs update
darcs pull



12 CHAPTER 1. INTRODUCTION

cvs -n update
darcs pull --dry-run (summarize remote changes)

cvs -n update
darcs whatsnew --summary (summarize local changes)

cvs -n update | grep ’?’
darcs whatsnew -ls | grep ^a (list potential files to add)

rm foo.txt; cvs update foo.txt
darcs revert foo.txt (revert to foo.txt from repo)

cvs diff
darcs whatsnew (if checking local changes)

cvs diff
darcs diff (if checking recorded changes)

cvs commit
darcs record (if committing locally)

cvs commit
darcs tag (if marking a version for later use)

cvs commit
darcs push or darcs send (if committing remotely)

cvs diff | mail
darcs send

cvs add
darcs add

cvs tag -b
darcs get

cvs tag
darcs tag

Migrating CVS repositories to darcs Tools and instructions for migrat-
ing CVS repositories to darcs are provided on the darcs community website:
http://darcs.net/DarcsWiki/ConvertingFromCvs

1.3 Switching from arch

Although arch, like darcs, is a distributed system, and the two systems have
many similarities (both require no special server, for example), their essential
organization is very different.

Like CVS, arch keeps data in two types of data structures: repositories
(called “archives”) and working directories. In order to modify a repository,
one must first check out a corresponding working directory. This requires that
users remember a number of different ways of pushing data around — tla get,
update, commit, archive-mirror and so on.

0http://darcs.net/DarcsWiki/ConvertingFromCvs



1.3. SWITCHING FROM ARCH 13

In darcs, on the other hand, there is no distinction between working directo-
ries and repositories, and just checking out your sources creates a local copy of
a repository. This allows you to harness the full power of version control in any
scratch copy of your sources, and also means that there are just two ways to
push data around: darcs record, which stores edits into your local repository,
and pull, which moves data between repositories. (darcs push is merely the
opposite of pull; send and apply are just the two halves of push).

Darcs commands for arch users Because of the different models used by
arch and darcs, it is difficult to provide a complete equivalence between arch
and darcs. A rough correspondence for the everyday commands follows:

tla init-tree
darcs initialize

tla get
darcs get

tla update
darcs pull

tla file-diffs f | patch -R
darcs revert

tla changes --diffs
darcs whatsnew

tla logs
darcs changes

tla file-diffs
darcs diff -u

tla add
darcs add

tla mv
darcs mv (not tla move)

tla commit
darcs record (if committing locally)

tla commit
darcs tag (if marking a version for later use)

tla commit
darcs push or darcs send (if committing remotely)

tla archive-mirror
darcs pull or darcs push

tla tag
darcs get (if creating a branch)

tla tag
darcs tag (if creating a tag).



14 CHAPTER 1. INTRODUCTION

Migrating arch repositories to darcs Tools and instructions for migrat-
ing arch repositories to darcs are provided on the darcs community website:
http://darcs.net/DarcsWiki/ConvertingFromArch

0http://darcs.net/DarcsWiki/ConvertingFromArch



Chapter 2

Building darcs

This chapter should walk you through the steps necessary to build darcs for
yourself. There are in general two ways to build darcs. One is for building
released versions from tarballs, and the other is to build the latest and greatest
darcs, from the darcs repo itself.

Please let me know if you have any problems building darcs, or don’t have
problems described in this chapter and think there’s something obsolete here,
so I can keep this page up-to-date.

2.1 Prerequisites

To build darcs you will need to have ghc, the Glorious Glasgow Haskell Com-
piler. You should have at the very minimum version 6.2.

It is a good idea (but not required) to have a recent version of libcurl in-
stalled. If not, you will at least need to have either wget or curl installed if
you want to be able to grab repos remotely over normal network protocols (ftp
or http). You also might want to have scp available if you want to grab your
repos over ssh. . .

To send patches, you will also need to have a working /usr/sbin/sendmail
or /usr/lib/sendmail, which is provided by most mail transport agents, and
is generally available on linux and BSD systems. It’s also there on Mac OS X.
However, if you don’t have this, it won’t stop you from building darcs.

To use the diff command of darcs, a diff program supporting options -r
(recursive diff) and -N (show new files as differences against an empty file) is
required. The configure script will look for gdiff, gnudiff and diff in this
order. You can force the use of another program by setting the DIFF environment
variable before running configure.

To rebuild the documentation (which should not be necessary since it is
included in html form with the tarballs), you will need to have latex installed,
as well as latex2html if you want to build it in html form.

15



16 CHAPTER 2. BUILDING DARCS

2.2 Building on Mac OS X

To build on Mac OS X, you will need the Apple Developer Tools and the ghc
6.4 package installed.

2.3 Building on Microsoft Windows

To build on Microsoft Windows, you will need:

• MinGW which provides the GCC toolchain for win32.

• MSYS which provides a unix build environment for win32. Be sure to
download the separate msysDTK, autoconf and automake.

• zlib-1.2.1+ library and headers.

• curl-7.12.2+ library and headers.

• If building with an SSL enabled curl you will need the OpenSSL libraries,
unofficial builds are available at http://www.slproweb.com/products/Win32OpenSSL.html.

Copy the zlib and curl libraries and headers to both GHC and MinGW. GHC
stores C headers in <ghc-dir>/gcc-lib/include and libraries in <ghc-dir>/gcc-lib.
MinGW stores headers in <mingw-dir>/include and libraries in <mingw-dir>/lib.

Set PATH to include the <msys-dir>/bin, <mingw-dir>/bin, <curl-dir>,
and a directory containing a pre-built darcs.exe if you want the build’s patch
context stored for ‘darcs --exact-version’.

C:\darcs> cd <darcs-source-dir>
C:\darcs> sh

$ export GHC=/c/<ghc-dir>/bin/ghc.exe
$ autoconf
$ ./configure --disable-mmap --target=mingw
$ make

2.4 Building from tarball

If you get darcs from a tarball, the procedure (after unpacking the tarball itself)
is as follows:

0http://www.mingw.org/
0http://www.mingw.org/msys.shtml
0http://www.gzip.org/zlib/
0http://curl.haxx.se/



2.5. BUILDING DARCS FROM THE REPOSITORY 17

% ./configure
% make
# Optional, but recommended to test compatibility with your environment.
% make test
% make install

There are options to configure that you may want to check out with

% ./configure --help

If your header files are installed in a non-standard location, you may need
to define the CFLAGS and CPPFLAGS environment variables to include the path
to the headers. e.g. on NetBSD, you may need to run

% CFLAGS=-I/usr/pkg/include CPPFLAGS=-I/usr/pkg/include ./configure

2.5 Building darcs from the repository

To build the latest darcs from its repository, you will first need a working copy
of darcs. You can get darcs using:

% darcs get -v http://abridgegame.org/repos/darcs

and once you have the darcs repository you can bring it up to date with a

% darcs pull

The repository doesn’t hold automatically generated files, which include the
configure script and the HTML documentation, so you need to run autoconf
first.

You’ll need autoconf 2.50 or higher. Some systems have more than one
version of autoconf installed. For example, autoconf may point to version
2.13, while autoconf259 runs version 2.59.

Also note that make is really ”GNU make”. On some systems, such as the
*BSDs, you may need to type gmake instead of make for this to work.

If you want to create readable documentation you’ll need to have latex in-
stalled.

% autoconf
% ./configure
% make
% make install

If you want to tweak the configure options, you’ll need to run ./configure
yourself after the make, and then run make again.



18 CHAPTER 2. BUILDING DARCS

2.6 Building darcs with git

To enable git support, you first need to grab a copy of the git source code;
since darcs doesn’t yet have the capability of accessing remote git repositories,
you’ll have to either download a tarball or use git itself to clone a git repository.
Compile git (no need to install); this will create a file “libgit.a”. Then create a
symlink to the git source directory named “git” in your darcs source directory,
configure darcs using the “--enable-git” option, and build darcs as usual.

2.7 Submitting patches to darcs

I know, this doesn’t really belong in this chapter, but if you’re using the repos-
itory version of darcs it’s really easy to submit patches to me using darcs. In
fact, even if you don’t know any Haskell, you could submit fixes or additions
to this document (by editing building_darcs.tex) based on your experience
building darcs. . .

To do so, just record your changes (which you made in the darcs repository)

% darcs record --no-test

making sure to give the patch a nice descriptive name. The --no-test op-
tions keeps darcs from trying to run the unit tests, which can be rather time-
consuming. Then you can send the patch to the darcs-devel mailing list by
email by

% darcs send -u

The darcs repository stores the email address to which patches should be sent
by default. The email address you see is actually my own, but when darcs
notices that you haven’t signed the patch with my GPG key, it will forward the
message to darcs-devel.



Chapter 3

Getting started

This chapter will lead you through an example use of darcs, which hopefully
will allow you to get started using darcs with your project.

3.1 Creating your repository

Creating your repository in the first place just involves telling darcs to create
the special directory (called darcs) in your project tree, which will hold the
revision information. This is done by simply calling from the root directory of
your project:

% cd my_project/
% darcs initialize

This creates the _darcs directory and populates it with whatever files and
directories are needed to describe an empty project. You now need to tell darcs
what files and directories in your project should be under revision control. You
do this using the command darcs add1:

% darcs add *.c Makefile.am configure.ac

When you have added all your files (or at least, think you have), you will want
to record your changes. “Recording” always includes adding a note as to why
the change was made, or what it does. In this case, we’ll just note that this is
the initial version.

% darcs record --all
What is the patch name? Initial revision.

Note that since we didn’t specify a patch name on the command line we were
prompted for one. If the environment variable ‘EMAIL’ isn’t set, you will also

1Note that darcs does not do wildcard expansion, instead relying on the command shell.
The Windows port of darcs has a limited form of expansion provided by the C runtime

19



20 CHAPTER 3. GETTING STARTED

be prompted for your email address. Each patch that is recorded is given a
unique identifier consisting of the patch name, its creator’s email address, and
the date when it was created.

3.2 Making changes

Now that we have created our repository, make a change to one or more of your
files. After making the modification run:

% darcs whatsnew

This should show you the modifications that you just made, in the darcs patch
format. If you prefer to see your changes in a different format, read Section 6.7.1,
which describes the whatsnew command in detail.

Let’s say you have now made a change to your project. The next thing to
do is to record a patch. Recording a patch consists of grouping together a set of
related changes, and giving them a name. It also tags the patch with the date
it was recorded and your email address.

To record a patch simply type:

% darcs record

darcs will then prompt you with all the changes that you have made that have
not yet been recorded, asking you which ones you want to include in the new
patch. Finally, darcs will ask you for a name for the patch.

You can now rerun whatsnew, and see that indeed the changes you have
recorded are no longer marked as new.

3.3 Making your repository visible to others

How do you let the world know about these wonderful changes? Obviously,
they must be able to see your repository. Currently the easiest way to do this is
typically by http using any web server. The recommended way to do this (using
apache in a UNIX environment) is to create a directory called /var/www/repos,
and then put a symlink to your repository there:

% cd /var/www/repos
% ln -s /home/username/myproject .

As long as you’re running a web server and making your repository avail-
able to the world, you may as well make it easy for people to see what changes
you’ve made. You can do this by running make installserver, which installs
the program darcs_cgi at /usr/lib/cgi-bin/darcs. You also will need to
create a cache directory named /var/cache/darcs_cgi, and make sure the
owner of that directory is the same user that your web server runs its cgi
scripts as. For me, this is www-data. Now your friends and enemies should
be able to easily browse your repositories by pointing their web browsers at
http://your.server.org/cgi-bin/darcs.



3.4. GETTING CHANGES MADE TO ANOTHER REPOSITORY 21

3.4 Getting changes made to another repository

Ok, so I can now browse your repository using my web browser. . . so what?
How do I get your changes into my repository, where they can do some good?
It couldn’t be easier. I just cd into my repository, and there type:

% darcs pull http://your.server.org/repos/yourproject

Darcs will check to see if you have recorded any changes that aren’t in my
current repository. If so, it’ll prompt me for each one, to see which ones I want
to add to my repository. Note that you may see a different series of prompts
depending on your answers, since sometimes one patch depends on another, so
if you answer yes to the first one, you won’t be prompted for the second if the
first depends on it.

Of course, maybe I don’t even have a copy of your repository. In that case
I’d want to do a

% darcs get http://your.server.org/repos/yourproject

which gets the whole repository.
I could instead create an empty repository and fetch all of your patches with

pull. Get is just a more efficient way to clone a whole repository.
Get, pull and push also work over ssh. Ssh-paths are of the same form

accepted by scp, namely [username@]host:/path/to/repository.

3.5 Moving patches from one repository to an-
other

Darcs is flexible as to how you move patches from one repository to another.
This section will introduce all the ways you can get patches from one place to
another, starting with the simplest and moving to the most complicated.

3.5.1 All pulls

The simplest method is the “all-pull” method. This involves making each
repository readable (by http, ftp, nfs-mounted disk, whatever), and you run
darcs pull in the repository you want to move the patch to. This is nice, as it
doesn’t require you to give write access to anyone else, and is reasonably simple.

3.5.2 Send and apply manually

Sometimes you have a machine on which it is not convenient to set up a web
server, perhaps because it’s behind a firewall or perhaps for security reasons, or
because it is often turned off. In this case you can use darcs send from that
computer to generate a patch bundle destined for another repository. You can
either let darcs email the patch for you, or save it as a file and transfer it by
hand. Then in the destination repository you (or the owner of that repository)



22 CHAPTER 3. GETTING STARTED

run darcs apply to apply the patches contained in the bundle. This is also
quite a simple method since, like the all-pull method, it doesn’t require that
you give anyone write access to your repository. But it’s less convenient, since
you have to keep track of the patch bundle (in the email, or whatever).

If you use the send and apply method with email, you’ll probably want to
create a _darcs/prefs/email file containing your email address. This way
anyone who sends to your repository will automatically send the patch bundle
to your email address.

If you receive many patches by email, you probably will benefit by running
darcs apply directly from your mail program. I have in my .muttrc the following

macro pager A "<pipe-entry>darcs apply --verbose --mark-conflicts \
--reply droundy@abridgegame.org --repodir ~/darcs"

which allows me to apply patches directly from mutt, sending a confirmation
email to the person who sent me the patch.

3.5.3 Push

If you use ssh (and preferably also ssh-agent, so you won’t have to keep retyping
your password), you can use the push method to transfer changes (using the
scp protocol for communication). This method is again not very complicated,
since you presumably already have the ssh permissions set up. Push can also
be used when the target repository is local, in which case ssh isn’t needed. On
the other hand, in this situation you could as easily run a pull, so there isn’t
much benefit.

Note that you can use push to administer a multiple-user repository. You
just need to create a user for the repository (or repositories), and give everyone
with write access ssh access, perhaps using .ssh/authorized_keys. Then they
run

% darcs push repouser@repo.server:repo/directory

3.5.4 Push —apply-as

Now we get more subtle. If you like the idea in the previous paragraph about
creating a repository user to own a repository which is writable by a number of
users, you have one other option.

Push --apply-as can run on either a local repository or one accessed with
ssh, but uses sudo to run a darcs apply command (having created a patch bundle
as in send) as another user. You can add the following line in your sudoers file
to allow the users to apply their patches to a centralized repository:

ALL ALL = (repo-user) NOPASSWD: /usr/bin/darcs apply --all --repodir /repo/path*

This method is ideal for a centralized repository when all the users have accounts
on the same computer, if you don’t want your users to be able to run arbitrary
commands as repo-user.



3.5. MOVING PATCHES FROM ONE REPOSITORY TO ANOTHER 23

3.5.5 Sending signed patches by email

Most of the previous methods are a bit clumsy if you don’t want to give each
person with write access to a repository an account on your server. Darcs send
can be configured to send a cryptographically signed patch by email. You can
then set up your mail system to have darcs verify that patches were signed by
an authorized user and apply them when a patch is received by email. The
results of the apply can be returned to the user by email. Unsigned patches
(or patches signed by unauthorized users) will be forwarded to the repository
owner (or whoever you configure them to be forwarded to. . . ).

This method is especially nice when combined with the --test option of
darcs apply, since it allows you to run the test suite (assuming you have one)
and reject patches that fail—and it’s all done on the server, so you can happily
go on working on your development machine without slowdown while the server
runs the tests.

Setting up darcs to run automatically in response to email is by far the most
complicated way to get patches from one repository to another. . . so it’ll take
a few sections to explain how to go about it.

Security considerations When you set up darcs to run apply on signed
patches, you should assume that a user with write access can write to any file or
directory that is writable by the user under which the apply process runs. Unless
you specify the --no-test flag to darcs apply (and this is not the default), you
are also allowing anyone with write access to that repository to run arbitrary
code on your machine (since they can run a test suite—which they can modify
however they like). This is quite a potential security hole.

For these reasons, if you don’t implicitly trust your users, it is recommended
that you create a user for each repository to limit the damage an attacker can
do with access to your repository. When considering who to trust, keep in mind
that a security breach on any developer’s machine could give an attacker access
to their private key and passphrase, and thus to your repository.

Installing necessary programs You also must install the following pro-
grams: gnupg, a mailer configured to receive mail (e.g. exim, sendmail or post-
fix), and a web server (usually apache). If you want to be able to browse your
repository on the web you must also configure your web server to run cgi scripts
and make sure the darcs cgi script was properly installed (by either a darcs-
server package, or ‘make install-server’).

Granting access to a repository You create your gpg key by running (as
your normal user):

% gpg --gen-key

You will be prompted for your name and email address, among other options.
To add your public key to the allowed keys keyring. Of course, you can skip
this step if you already have a gpg key you wish to use.



24 CHAPTER 3. GETTING STARTED

You now need to export the public key so we can tell the patcher about it.
You can do this with the following command (again as your normal user):

% gpg --export "email@address" > /tmp/exported_key

And now we can add your key to the allowed_keys:

(as root)> gpg --keyring /var/lib/darcs/repos/myproject/allowed_keys \
--no-default-keyring --import /tmp/exported_key

You can repeat this process any number of times to authorize multiple users to
send patches to the repository.

You should now be able to send a patch to the repository by running as your
normal user, in a working copy of the repository:

% darcs send --sign http://your.computer/repos/myproject

You may want to add “send sign” to the file _darcs/prefs/defaults so that
you won’t need to type --sign every time you want to send. . .

If your gpg key is protected by a passphrase, then executing send with the
--sign option might give you the following error:

darcs failed: Error running external program ’gpg’

The most likely cause of this error is that you have a misconfigured gpg that tries
to automatically use a non-existent gpg-agent program. GnuPG will still work
without gpg-agent when you try to sign or encrypt your data with a passphrase
protected key. However, it will exit with an error code 2 (ENOENT) causing
darcs to fail. To fix this, you will need to edit your ~/.gnupg/gpg.conf file
and comment out or remove the line that says:

use-agent

If after commenting out or removing the use-agent line in your gpg config-
uration file you still get the same error, then you probably have a modified
GnuPG with use-agent as a hard-coded option. In that case, you should change
use-agent to no-use-agent to disable it explicitly.

Setting up a sendable repository using procmail If you don’t have root
access on your machine, or perhaps simply don’t want to bother creating a
separate user, you can set up a darcs repository using procmail to filter your
mail. I will assume that you already use procmail to filter your email. If not,
you will need to read up on it, or perhaps should use a different method for
routing the email to darcs.

To begin with, you must configure your repository so that a darcs send
to your repository will know where to send the email. Do this by creating a
file in /path/to/your/repo/_darcs/prefs called email containing your email
address. As a trick (to be explained below), we will create the email address
with “darcs repo” as your name, in an email address of the form “David Roundy
<droundy@abridgegame.org>.”



3.6. REDUCING DISK SPACE USAGE 25

% echo ’my darcs repo <user@host.com>’ > /path/to/your/repo/_darcs/prefs/email

The next step is to set up a gnupg keyring containing the public keys of
people authorized to send to your repository. Here I’ll give a second way of
going about this (see above for the first). This time I’ll assume you want to give
me write access to your repository. You can do this by:

gpg --no-default-keyring \
--keyring /path/to/the/allowed_keys --recv-keys D3D5BCEC

This works because “D3D5BCEC” is the ID of my gpg key, and I have uploaded
my key to the gpg keyservers. Actually, this also requires that you have config-
ured gpg to access a valid keyserver. You can, of course, repeat this command
for all keys you want to allow access to.

Finally, we add a few lines to your .procmailrc:

:0:
* ^TOmy darcs repo
|(umask 022; darcs apply --reply user@host.com \

--repodir /path/to/your/repo --verify /path/to/the/allowed_keys)

The purpose for the “my darcs repo” trick is partially to make it easier to
recognize patches sent to the repository, but is even more crucial to avoid nasty
bounce loops by making the --reply option have an email address that won’t
go back to the repository. This means that unsigned patches that are sent to
your repository will be forwarded to your ordinary email.

I find that I need the “umask 022” in order to keep procmail from setting the
umask incorrectly, which causes the repository to no longer be world-readable.

Checking if your e-mail patch was applied After sending a patch with
darcs send, you may not receive any feedback, even if the patch is applied. You
can confirm whether or not your patch was applied to the remote repository by
pointing darcs changes at a remote repository:

darcs changes --last=10 --repo=http://abridgegame.org/repos/darcs

That shows you the last 10 changes in the remote repository. You can adjust
the options given to changes if a more advanced query is needed.

3.6 Reducing disk space usage

A Darcs repository contains the patches that Darcs uses to store history, the
working directory, and a pristine tree (a copy of the working directory files with
no local modifications). For large repositories, this can add up to a fair amount
of disk usage.

There are two techniques that can be used to reduce the amount of space
used by Darcs repositories: linking and using no pristine tree. The former can
be used on any repository; the latter is only suitable in special circumstances,
as it makes some operations much slower.



26 CHAPTER 3. GETTING STARTED

3.6.1 Linking between repositories

A number of filesystems support linking files, sharing a single file data between
different directories. Under some circumstances, when repositories are very
similar (typically because they represent different branches of the same piece of
software), Darcs will use linking to avoid storing the same file multiple times.

Whenever you invoke darcs get to copy a repository from a local filesystem
onto the same filesystem, Darcs will link patches whenever possible.

In order to save time, darcs get does not link pristine trees even when
individual files are identical. Additionally, as you pull patches into trees, patches
will become unlinked. This will result in a lot of wasted space if two repositories
have been living for a long time but are similar. In such a case, you should relink
files between the two repositories.

Relinking is an asymmetric operation: you relink one repository (to which
you must have write access) to another repository, called the sibling. This is
done with darcs optimize --relink, with –the --sibling flag specifying the
sibling.

$ cd /var/repos/darcs-unstable
$ darcs optimize --relink --sibling /var/repos/darcs

The --sibling flag can be repeated multiple times, in which case Darcs will
try to find a file to link to in all of the siblings. If a default repository is defined,
Darcs will try, as a last resort, to link against the default repository.

Additional space savings can be achieved by relinking files in the pristine
tree (see below) by using the --relink-pristine flag. However, doing this
prevents Darcs from having precise timestamps on the pristine files, which car-
ries a moderate performance penalty.

3.6.2 Alternate formats for the pristine tree

By default, every Darcs repository contains a complete copy of the pristine tree,
the working tree as it would be if there were no local edits. By avoiding the
need to consult a possibly large number of patches just to find out if a file
is modified, the pristine tree makes a lot of operations much faster than they
would otherwise be.

Under some circumstances, keeping a whole pristine tree is not desirable.
This is the case when preparing a repository to back up, when publishing a
repository on a public web server with limited space, or when storing a repository
on floppies or small USB keys. In such cases, it is possible to use a repository
with no pristine tree.

Darcs automatically recognizes a repository with no pristine tree. In order to
create such a tree, specify the --no-pristine-tree flag to darcs initialize
or darcs get. There is currently no way to switch an existing repository to use
no pristine tree.

The support for --no-pristine-tree repositories is fairly new, and has not
been extensively optimized yet. Please let us know if you use this functionality,



3.6. REDUCING DISK SPACE USAGE 27

and which operations you find are too slow.



28 CHAPTER 3. GETTING STARTED



Chapter 4

Configuring darcs

There are several ways you can adjust darcs’ behavior to suit your needs. The
first is to edit files in the _darcs/prefs/ directory of a repository. Such con-
figuration only applies when working with that repository. To configure darcs
on a per-user rather than per-repository basis (but with essentially the same
methods), you can edit (or create) files in the ~/.darcs/ directory. Finally,
the behavior of some darcs commands can be modified by setting appropriate
environment variables.

4.1 prefs

The _darcs directory contains a prefs directory. This directory exists simply
to hold user configuration settings specific to this repository. The contents of
this directory are intended to be modifiable by the user, although in some cases
a mistake in such a modification may cause darcs to behave strangely.

defaults Default values for darcs commands can be configured on a per-
repository basis by editing (and possibly creating) the _darcs/prefs/defaults
file. Each line of this file has the following form:

COMMAND FLAG VALUE

where COMMAND is either the name of the command to which the default applies,
or ALL to indicate that the default applies to all commands accepting that flag.
The FLAG term is the name of the long argument option without the “--”, i.e.
verbose rather than --verbose. Finally, the VALUE option can be omitted if
the flag is one such as verbose that doesn’t involve a value. Each line only takes
one flag. To set multiple defaults for the same command (or for ALL commands),
use multiple lines.

~/.darcs/defaults provides defaults for this user account
project/_darcs/prefs/defaults provides defaults for one project, overrules changes per user

29



30 CHAPTER 4. CONFIGURING DARCS

For example, if your system clock is bizarre, you could instruct darcs to
always ignore the file modification times by adding the following line to your
_darcs/prefs/defaults file. (Note that this would have to be done for each
repository!)

ALL ignore-times

If you never want to run a test when recording to a particular repository
(but still want to do so when running check on that repository), and like to
name all your patches “Stupid patch”, you could use the following:

record no-test
record patch-name Stupid patch

If you would like a command to be run every time patches are recorded in
a particular repository (for example if you have one central repository, that all
developers contribute to), then you can set apply to always run a command
when apply is successful. For example, if you need to make sure that the files in
the repository have the correct access rights you might use the following. There
are two things to note about using darcs this way:

• Without the second line you will get errors, because the sub process that
runs apply cannot prompt interactively.

• Whatever script is run by the post apply command should not be be added
to the repository with darcs add; doing so would allow people to modify
that file and then run arbitrary scripts on your main repository, possibly
damaging or violating security.

apply posthook chmod -R a+r *
apply run-posthook

There are some options which are meant specifically for use in _darcs/prefs/defaults.
One of them is --disable. As the name suggests, this option will disable every
command that got it as argument. So, if you are afraid that you could damage
your repositories by inadvertent use of a command like amend-record, add the
following line to _darcs/prefs/defaults:

amend-record disable

Also, a global preferences file can be created with the name .darcs/defaults
in your home directory. Options present there will be added to the repository-
specific preferences. If they conflict with repository-specific options, the repository-
specific ones will take precedence.

repos The _darcs/prefs/repos file contains a list of repositories you have
pulled from or pushed to, and is used for autocompletion of pull and push
commands in bash. Feel free to delete any lines from this list that might get in
there, or to delete the file as a whole.



4.1. PREFS 31

author The _darcs/prefs/author file contains the email address (or name)
to be used as the author when patches are recorded in this repository, e.g.
David Roundy <droundy@abridgegame.org>. This file overrides the contents
of the environment variables $DARCS_EMAIL and $EMAIL.

boring The _darcs/prefs/boring file may contain a list of regular expres-
sions describing files, such as object files, that you do not expect to add to your
project. As an example, the boring file that I use with my darcs repository is:

\.hi$
\.o$
^\.[^/]
^_
~$
(^|/)CVS($|/)

A newly created repository has a longer boring file that includes many common
source control, backup, temporary, and compiled files.

You may want to have the boring file under version control. To do this you
can use darcs setpref to set the value “boringfile” to the name of your desired
boring file (e.g. darcs setpref boringfile .boring, where .boring is the
repository path of a file that has been darcs added to your repository). The
boringfile preference overrides _darcs/prefs/boring, so be sure to copy that
file to the boringfile.

You can also set up a “boring” regexps file in your home directory, named
~/.darcs/boring, which will be used with all of your darcs repositories.

Any file whose repository path (such as manual/index.html) matches any of
the boring regular expressions is considered boring. The boring file is used to fil-
ter the files provided to darcs add, to allow you to use a simple darcs add newdir newdir/*
without accidentally adding a bunch of object files. It is also used when the
--look-for-adds flag is given to whatsnew or record.

binaries The _darcs/prefs/binaries file may contain a list of regular ex-
pressions describing files that should be treated as binary files rather than text
files. You probably will want to have the binaries file under version control.
To do this you can use darcs setpref to set the value “binariesfile” to the name
of your desired binaries file (e.g. darcs setpref binariesfile ./.binaries,
where .binaries is a file that has been darcs added to your repository). As
with the boring file, you can also set up a ~/.darcs/binaries file if you like.

email The _darcs/prefs/email file is used to provide the e-mail address for
your repository that others will use when they darcs send a patch back to you.
The contents of the file should simply be an e-mail address.



32 CHAPTER 4. CONFIGURING DARCS

motd The _darcs/prefs/motd file may contain a “message of the day” which
will be displayed to users who get or pull from the repository without the
--quiet option.

4.2 Environment variables

There are a few environment variables whose contents affect darcs’ behavior.

DARCS EMAIL The DARCS EMAIL environment variable determines the
“author” name used by darcs when recording if no _darcs/prefs/author ex-
ists. If DARCS EMAIL is undefined, the contents of the EMAIL environment
variable are used.

DARCS EDITOR When pulling up an editor (for example, when adding a
long comment in record), darcs uses the contents of DARCS EDITOR if it is
defined. If not, it tries the contents of VISUAL, and if that isn’t defined (or
fails for some reason), it tries EDITOR. If none of those environment variables
are defined, darcs tries vi, emacs, emacs -nw and nano in that order.

DARCS TMPDIR If the environment variable DARCS TMPDIR is defined,
darcs will use that directory for its temporaries. Otherwise it will use TMPDIR,
if that is defined, and if not that then /tmp and if /tmp doesn’t exist, it’ll put
the temporaries in _darcs.

This is very helpful, for example, when recording with a test suite that uses
MPI, in which case using /tmp to hold the test copy is no good, as /tmp isn’t
shared over NFS and thus the mpirun call will fail, since the binary isn’t present
on the compute nodes.

HOME HOME is used to find the per-user prefs directory, which is located
at $HOME/.darcs.

TERM If darcs is compiled with libcurses support and support for color out-
put, it uses the environment variable TERM to decide whether or not color is
supported on the output terminal.

SSH PORT When using ssh, if the SSH PORT environment variable is de-
fined, darcs will use that port rather than the default ssh port (which is 22).

DARCS SSH The DARCS SSH environment variable defines the command
that darcs will use when asked to run ssh. This command is not interpreted
by a shell, so you cannot use shell metacharacters, and the first word in the
command must be the name of an executable located in your path.



4.2. ENVIRONMENT VARIABLES 33

DARCS SCP and DARCS SFTP The DARCS SCP and DARCS SFTP
environment variables define the commands that darcs will use when asked to
run scp or sftp. Note that scp and sftp is how darcs accesses repositories whose
URL is of the form user@foo.org:foo or foo.org:foo. Darcs will use scp to
copy single files (e.g. repository meta-information), and sftp to copy multiple
files in batches (e.g. patches). These commands are not interpreted by a shell,
so you cannot use shell metacharacters, and the first word in the command must
be the name of an executable located in your path.

DARCS PROXYUSERPWD This environment variable allows DARCS
and libcurl to access remote repositories via a password-protected HTTP proxy.
The proxy itself is specified with the standard environment variable for this
purpose, namely ’http proxy’. The DARCS PROXYUSERPWD environment
variable specifies the proxy username and password. It must be given in the
form username:password.

DARCS GET FOO, DARCS MGET FOO and DARCS APPLY FOO
When trying to access a repository with a url beginning foo://, darcs will invoke
the program specified by the DARCS GET FOO environment variable (if de-
fined) to download each file, and the command specified by the DARCS APPLY FOO
environment variable (if defined) when pushing to a foo:// url.

This method overrides all other ways of getting foo://xxx urls.
Note that each command should be constructed so that it sends the down-

loaded content to STDOUT, and the next argument to it should be the URL.
Here are some examples that should work for DARCS GET HTTP:

fetch -q -o -
curl -s -f
lynx -source
wget -q -O -

If set, DARCS MGET FOO will be used to fetch many files from a single
repository simultaneously. Replace FOO and foo as appropriate to handle other
URL schemes. These commands are not interpreted by a shell, so you cannot
use shell metacharacters, and the first word in the command must be the name
of an executable located in your path. The GET command will be called with
a url for each file, the MGET command will be invoked with a number of urls
and is expected to download the files to the current directory, preserving the
filename but not the path, the APPLY command will be called with a darcs
patchfile piped into its standard input. Example:

wget -q

DARCS MGETMAX When invoking a DARCS MGET FOO command,
darcs will limit the number of urls presented to the command to the value of
this variable, if set, or 200.



34 CHAPTER 4. CONFIGURING DARCS

DARCS WGET This is a very old option that is only used if libcurl is not
compiled in and one of the DARCS GET FOO is not used. Using one of those
is recommended instead.

The DARCS WGET environment variable defines the command that darcs
will use to fetch all URLs for remote repositories. The first word in the command
must be the name of an executable located in your path. Extra arguments can
be included as well, such as:

wget -q

Darcs will append -i to the argument list, which it uses to provide a list of
URLS to download. This allows wget to download multiple patches at the same
time. It’s possible to use another command besides wget with this environment
variable, but it must support the -i option in the same way.

These commands are not interpreted by a shell, so you cannot use shell
meta-characters.

4.3 Highlighted output

If the terminal understands ANSI color codes, darcs will highlight certain key-
words and delimiters when printing patches. This can be turned off by setting
the environment variable DARCS DONT COLOR to 1. If you use a pager that
happens to understands ANSI colors, like less -R, darcs can be forced to al-
ways highlight the output by setting DARCS ALWAYS COLOR to 1. If you
can’t see colors you can set DARCS ALTERNATIVE COLOR to 1, and darcs
will use ANSI codes for bold and reverse video instead of colors.

By default darcs will escape (by highlighting if possible) any kind of spaces at
the end of lines when showing patch contents. If you don’t want this you can turn
it off by setting DARCS DONT ESCAPE TRAILING SPACES to 1. A special
case exists for only carriage returns: DARCS DONT ESCAPE TRAILING CR.

4.4 Character escaping and non-ASCII charac-
ter encodings

Darcs needs to escape certain characters when printing patch contents to a
terminal. Characters like backspace can otherwise hide patch content from the
user, and other character sequences can even in some cases redirect commands
to the shell if the terminal allows it.

By default darcs will only allow printable 7-bit ASCII characters (including
space), and the two control characters tab and newline. (See the last paragraph
in this section for a way to tailor this behavior.) All other octets are printed in
quoted form (as ^<control letter> or \<hex code>).

Darcs has some limited support for locales. If the systems locale is a single-
byte character encoding, like the Latin encodings, you can set the environment



4.4. CHARACTER ESCAPING AND NON-ASCII CHARACTER ENCODINGS35

variable DARCS DONT ESCAPE ISPRINT to 1 and darcs will display all the
printables in the current system locale instead of just the ASCII ones. NOTE:
This does curently not work on some architectures if darcs is compiled with
GHC 6.4. Some non-ASCII control characters might be printed and can possibly
spoof the terminal.

For multi-byte character encodings things are less smooth. UTF-8 will work
if you set DARCS DONT ESCAPE 8BIT to 1, but non-printables outside the 7-
bit ASCII range are no longer escaped. E.g., the extra control characters from
Latin1 might leave your terminal at the mercy of the patch contents. Space
characters outside the 7-bit ASCII range are no longer recognized and will not
be properly escaped at line endings.

As a last resort you can set DARCS DONT ESCAPE ANYTHING to 1.
Then everything that doesn’t flip code sets should work, and so will all the bells
and whistles in your terminal. This environment variable can also be handy if
you pipe the output to a pager or external filter that knows better than darcs
how to handle your encoding. Note that all escaping, including the special
escaping of any line ending spaces, will be turned off by this setting.

There are two environment variables you can set to explicitly tell darcs to
not escape or escape octets. They are DARCS DONT ESCAPE EXTRA and
DARCS ESCAPE EXTRA. Their values should be strings consisting of the ver-
batim octets in question. The do-escapes take precedence over the dont-escapes.
Space characters are still escaped at line endings though. The special environ-
ment variable DARCS DONT ESCAPE TRAILING CR turns off escaping of
carriage return last on the line (DOS style).



36 CHAPTER 4. CONFIGURING DARCS



Chapter 5

Best practices

5.1 Introduction

This chapter is intended to review various scenarios and describe in each case
effective ways of using darcs. There is no one “best practice”, and darcs is a
sufficiently low-level tool that there are many high-level ways one can use it,
which can be confusing to new users. The plan (and hope) is that various users
will contribute here describing how they use darcs in different environments.
However, this is not a wiki, and contributions will be edited and reviewed for
consistency and wisdom.

5.2 Creating patches

This section will lay down the concepts around patch creation. The aim is to
develop a way of thinking that corresponds well to how darcs is behaving —
even in complicated situations.

In a single darcs repository you can think of two “versions” of the source
tree. They are called the working and pristine trees. Working is your normal
source tree, with or without darcs alongside. The only thing that makes it
part of a darcs repository is the _darcs directory in its root. Pristine is the
recorded state of the source tree. The pristine tree is constructed from groups
of changes, called patches (some other version control systems use the term
changeset instead of patch).1 Darcs will create and store these patches based
on the changes you make in working.

1If you look inside darcs you will find files or directories named patches and inventories,
which store all the patches ever recorded. If the repository holds a cached pristine tree, it is
stored in a directory called pristine or current; otherwise, the fact that there is no pristine
tree is marked by the presence of a file called pristine.none or current.none.

37



38 CHAPTER 5. BEST PRACTICES

5.2.1 Changes

If working and pristine are the same, there are “no changes” in the repository.
Changes can be introduced (or removed) by editing the files in working. They
can also be caused by darcs commands, which can modify both working and
pristine. It is important to understand for each darcs command how it modifies
working, pristine or both of them.

whatsnew (as well as diff) can show the difference between working and
pristine to you. It will be shown as a difference in working. In advanced cases
it need not be working that has changed; it can just as well have been pristine,
or both. The important thing is the difference and what darcs can do with it.

5.2.2 Keeping or discarding changes

If you have a difference in working, you do two things with it: record it to keep
it, or revert it to lose the changes.2

If you have a difference between working and pristine—for example after
editing some files in working—whatsnew will show some “unrecorded changes”.
To save these changes, use record. It will create a new patch in pristine with
the same changes, so working and pristine are no longer different. To instead
undo the changes in working, use revert. It will modify the files in working to
be the same as in pristine (where the changes do not exist).

5.2.3 Unrecording changes

unrecord is a command meant to be run only in private repositories. Its in-
tended purpose is to allow developers the flexibility to undo patches that haven’t
been distributed yet.

However, darcs does not prevent you from unrecording a patch that has been
copied to another repository. Be aware of this danger!

If you unrecord a patch, that patch will be deleted from pristine. This
will cause working to be different from pristine, and whatsnew to report un-
recorded changes. The difference will be the same as just before that patch
was recorded. Think about it. record examines what’s different with working
and constructs a patch with the same changes in pristine so they are no longer
different. unrecord deletes this patch; the changes in pristine disappear and
the difference is back.

If the recorded changes included an error, the resulting flawed patch can be
unrecorded. When the changes have been fixed, they can be recorded again as
a new—hopefully flawless—patch.

If the whole change was wrong it can be discarded from working too, with
revert. revert will update working to the state of pristine, in which the
changes do no longer exist after the patch was deleted.

2Revert can undo precious work in a blink. To protect you from great grief, the discarded
changes are saved temporarily so the latest revert can be undone with unrevert.



5.2. CREATING PATCHES 39

Keep in mind that the patches are your history, so deleting them with
unrecord makes it impossible to track what changes you really made. Re-
doing the patches is how you “cover the tracks”. On the other hand, it can be
a very convenient way to manage and organize changes while you try them out
in your private repository. When all is ready for shipping, the changes can be
reorganized in what seems as useful and impressive patches. Use it with care.

All patches are global, so don’t ever replace an already “shipped” patch
in this way! If an erroneous patch is deleted and replaced with a better one,
you have to replace it in all repositories that have a copy of it. This may not
be feasible, unless it’s all private repositories. If other developers have already
made patches or tags in their repositories that depend on the old patch, things
will get complicated.

5.2.4 Special patches and pending

The patches described in the previous sections have mostly been hunks. A
hunk is one of darcs’ primitive patch types, and it is used to remove old lines
and/or insert new lines. There are other types of primitive patches, such as
adddir and addfile which add new directories and files, and replace which does
a search-and-replace on tokens in files.

Hunks are always calculated in place with a diff algorithm just before whatsnew
or record. But other types of primitive patches need to be explicitly created
with a darcs command. They are kept in pending3 until they are either recorded
or reverted.

Pending can be thought of as a special extension of working. When you
issue, e.g., a darcs replace command, the replace is performed on the files
in working and at the same time a replace patch is put in pending. Patches
in pending describe special changes made in working. The diff algorithm will
fictively apply these changes to pristine before it compares it to working, so all
lines in working that are changed by a replace command will also be changed
in pending+pristine when the hunks are calculated. That’s why no hunks with
the replaced lines will be shown by whatsnew; it only shows the replace patch
in pending responsible for the change.

If a special patch is recorded, it will simply be moved to pristine. If it is
instead reverted, it will be deleted from pending and the accompanying change
will be removed from working.

Note that reverting a patch in pending is not the same as simply removing
it from pending. It actually applies the inverse of the change to working. Most
notable is that reverting an addfile patch will delete the file in working (the
inverse of adding it). So if you add the wrong file to darcs by mistake, don’t
revert the addfile. Instead use remove, which cancels out the addfile in pending.

3In the file darcs/patches/pending.



40 CHAPTER 5. BEST PRACTICES

5.3 Using patches

This section will lay down the concepts around patch distribution and branches.
The aim is to develop a way of thinking that corresponds well to how darcs is
behaving — even in complicated situations.

A repository is a collection of patches. Patches have no defined order, but
patches can have dependencies on other patches. Patches can be added to a
repository in any order as long as all patches depended upon are there. Patches
can be removed from a repository in any order, as long as no remaining patches
depend on them.

Repositories can be cloned to create branches. Patches created in different
branches may conflict. A conflict is a valid state of a repository. A conflict
makes the working tree ambiguous until the conflict is resolved.

5.3.1 Dependencies

There are two kinds of dependencies: implicit dependencies and explicit depen-
dencies.

Implicit dependencies is the far most common kind. These are calculated
automatically by darcs. If a patch removes a file or a line of code, it will have
to depend on the patch that added that file or line of code.4 If a patch adds a
line of code, it will usually have to depend on the patch or patches that added
the adjacent lines.

Explicit dependencies can be created if you give the --ask-deps option
to darcs record. This is good for assuring that logical dependencies hold
between patches. It can also be used to group patches—a patch with explicit
dependencies doesn’t need to change anything—and pulling the patch also pulls
all patches it was made to depend on.

5.3.2 Branches: just normal repositories

Darcs does not have branches—it doesn’t need to. Every repository can be used
as a branch. This means that any two repositories are “branches” in darcs, but
it is not of much use unless they have a large portion of patches in common.
If they are different projects they will have nothing in common, but darcs may
still very well be able to merge them, although the result probably is nonsense.
Therefore the word “branch” isn’t a technical term in darcs; it’s just the way
we think of one repository in relation to another.

Branches are very useful in darcs. They are in fact necessary if you want to
do more than only simple work. When you get someone’s repository from the
Internet, you are actually creating a branch of it. It may first seem inefficient
(or if you come from CVS—frightening), not to say plain awkward. But darcs
is designed this way, and it has means to make it efficient. The answer to many
questions about how to do a thing with darcs is: “use a branch”. It is a simple

4Actually it doesn’t have to—in theory—, but in practice it’s hard to create “negative” files
or lines in the working tree. See the chapter about Theory of patches for other constraints.



5.3. USING PATCHES 41

and elegant solution with great power and flexibility, which contributes to darcs’
uncomplicated user interface.

You create new branches (i.e., clone repositories) with the get and put
commands.

5.3.3 Moving patches around—no versions

Patches are global, and a copy of a patch either is or is not present in a branch.
This way you can rig a branch almost any way you like, as long as dependencies
are fulfilled—darcs won’t let you break dependencies. If you suspect a certain
feature from some time ago introduced a bug, you can remove the patch/patches
that adds the feature, and try without it.5

Patches are added to a repository with pull and removed from the repos-
itories with unpull. Don’t confuse these two commands with record and
unrecord, which constructs and deconstructs patches.

It is important not to lose patches when (re)moving them around. pull
needs a source repository to copy the patch from, whereas unpull just erases
the patch. Beware that if you unpull all copies of a patch it is completely lost—
forever. Therefore you should work with branches when you unpull patches.
The unpull command can wisely be disabled in a dedicated main repository by
adding unpull disable to the repository’s defaults file.

For convenience, there is a push command. It works like pull but in the
other direction. It also differs from pull in an important way: it starts a second
instance of darcs to apply the patch in the target repository, even if it’s on the
same computer. It can cause surprises if you have a “wrong” darcs in your
PATH.

5.3.4 Tags—versions

While pull and unpull can be used to construct different “versions” in a repos-
itory, it is often desirable to name specific configurations of patches so they can
be identified and retrieved easily later. This is how darcs implements what is
usually known as versions. The command for this is tag, and it records a tag
in the current repository.

A tag is just a patch, but it only contains explicit dependencies. It will
depend on all the patches in the current repository.6 Darcs can recognize if a
patch is as a tag; tags are sometimes treated specially by darcs commands.

While traditional revision control systems tag versions in the time line his-
tory, darcs lets you tag any configuration of patches at any time, and pass the
tags around between branches.

With the option --tag to get you can easily get a named version in the
repository as a new branch.

5darcs even has a special command, trackdown that automatically removes patches until
a specified test no longer fails.

6It will omit patches already depended upon by other patches, since they will be indirectly
depended upon anyway.



42 CHAPTER 5. BEST PRACTICES

5.3.5 Conflicts

This part of darcs becomes a bit complicated, and the description given here is
slightly simplified.

Conflicting patches are created when you record changes to the same line in
two different repositories. Same line does not mean the same line number and
file name, but the same line added by a common depended-upon patch.

Contrary to many other merging tools, darcs considers two patches mak-
ing the same change to be a conflict. In fact, darcs doesn’t even look at
the contents of the conflicting lines. If you think this is wrong, think about
two different patches each adding a new keyword and also changing the line
“#define NUM_OF_KEYWORDS 17” to “#define NUM_OF_KEYWORDS 18”.

A conflict happens when two conflicting patches meet in the same repository.
This is no problem for darcs; it can happily pull together just any patches. But
it is a problem for the files in working (and pristine). The conflict can be
thought of as two patches telling darcs different things about what a file should
look like.

Darcs escapes this problem by ignoring those parts7 of the patches that
conflict. They are ignored in both patches. If patch A changes the line “FIXME”
to “FIXED”, and patch B changes the same line to “DONE”, the two patches
together will produce the line “FIXME”. Darcs doesn’t care which one you
pulled into the repository first, you still get the same result when the conflicting
patches meet. All other changes made by A and B are performed as normal.

Darcs can mark a conflict for you in working. This is done with resolve
(which isn’t a very good name). Conflicts are marked such that both conflicting
changes are inserted with special delimiter lines around them. Then you can
merge the two changes by hand, and remove the delimiters.

When you pull patches, darcs automatically performs a resolve for you if
a conflict happens. You can remove the markup with revert, Remember that
the result will be the lines from the previous version common to both conflicting
patches. The conflict marking can be redone again with resolve.

A special case is when a pulled patch conflicts with unrecorded changes in
the repository. The conflict will be automatically marked as usual, but since the
markup is also an unrecorded change, it will get mixed in with your unrecorded
changes. There is no guarantee you can revert only the markup after this, and
resolve will not be able to redo this markup later if you remove it. It is good
practice to record important changes before pulling.

resolve can’t mark complicated conflicts. In that case you’ll have to use
darcs diff and other commands to understand what the conflict is all about.
If for example two conflicting patches create the same file, resolve will pick
just one of them, and no delimiters are inserted. So watch out if darcs tells you
about a conflict.

resolve can also be used to check for unresolved conflicts. If there are
none, darcs replies “No conflicts to resolve”. While pull reports when a conflict
happens, unpull and get don’t.

7The primitive patches making up the total patch.



5.4. DISTRIBUTED DEVELOPMENT WITH ONE PRIMARY DEVELOPER43

5.3.6 Resolving conflicts

A conflict is resolved (not marked, as with the command resolve) as soon as
some new patch depends on the conflicting patches. This will usually be the
resolve patch you record after manually putting together the pieces from the
conflict markup produced by resolve (or pull). But it can just as well be a
tag. So don’t forget to fix conflicts before you accidently “resolve” them by
recording other patches.

If the conflict is with one of your not-yet-published patches, you may choose
to amend that patch rather than creating a resolve patch.

If you want to back out and wait with the conflict, you can unpull the
conflicting patch you just pulled. Before you can do that you have to revert
the conflict markups that pull inserted when the conflict happened.

5.4 Distributed development with one primary
developer

This is how darcs itself is developed. There are many contributors to darcs, but
every contribution is reviewed and manually applied by myself. For this sort of
a situation, darcs send is ideal, since the barrier for contributions is very low,
which helps encourage contributors.

One could simply set the _darcs/prefs/email value to the project mailing
list, but I also use darcs send to send my changes to the main server, so instead
the email address is set to “Davids Darcs Repo <droundy@abridgegame.org>”.
My .procmailrc file on the server has the following rule:

:0:
* ^TODavids Darcs Repo
|(umask 022; darcs apply --reply darcs-devel@abridgegame.org \

--repodir /path/to/repo --verify /path/to/allowed_keys)

This causes darcs apply to be run on any email sent to “Davids Darcs Repo”.
apply actually applies them only if they are signed by an authorized key. Cur-
rently, the only authorized key is mine, but of course this could be extended
easily enough.

The central darcs repository contains the following values in its _darcs/prefs/defaults:

apply test
apply verbose
apply happy-forwarding

The first line tells apply to always run the test suite. The test suite is in fact the
main reason I use send rather than push, since it allows me to easily continue
working (or put my computer to sleep) while the tests are being run on the
main server. The second line is just there to improve the email response that
I get when a patch has either been applied or failed the tests. The third line



44 CHAPTER 5. BEST PRACTICES

makes darcs not complain about unsigned patches, but just to forward them to
darcs-devel.

On my development computer, I have in my .muttrc the following alias,
which allows me to easily apply patches that I get via email directly to my
darcs working directory:

macro pager A "<pipe-entry>(umask 022; darcs apply --no-test -v --repodir ~/darcs)"

5.5 Development by a small group of developers
in one office

This section describes the development method used for the density functional
theory code DFT++, which is available at http://dft.physics.cornell.edu/dft.

We have a number of workstations which all mount the same /home via
NFS. We created a special “dft” user, with the central repository living in that
user’s home directory. The ssh public keys of authorized persons are added to
the “dft” user’s .ssh/allowed_keys, and we commit patches to this repository
using darcs push. As in Section 5.4, we have the central repository set to run
the test suite before the push goes through.

Note that no one ever runs as the dft user.
A subtlety that we ran into showed up in the running of the test suite.

Since our test suite includes the running of MPI programs, it must be run in
a directory that is mounted across our cluster. To achieve this, we set the
$DARCS_TMPDIR environment variable to ~/tmp.

Note that even though there are only four active developers at the moment,
the distributed nature of darcs still plays a large role. Each developer works on
a feature until it is stable, a process that often takes quite a few patches, and
only once it is stable does he push to the central repository.



Chapter 6

Darcs commands

The general format of a darcs command is

% darcs COMMAND OPTIONS ARGUMENTS ...

Here COMMAND is a command such as add or record, which of course may have
one or more arguments. Options have the form --option or -o, while arguments
vary from command to command. There are many options which are common
to a number of different commands, which will be summarized here.

If you wish, you may use any unambiguous beginning of a command name as
a shortcut: for darcs record, you could type darcs recor or darcs rec, but
not darcs re since that could be confused with darcs replace, darcs revert
and darcs remove.

In some cases, COMMAND actually consists of two words, a super-command
and a subcommand. For example, the “display the manifest” command has the
form darcs query manifest.

Command overview Not all commands modify the “patches” of your repos-
itory (that is, the named patches which other users can pull); some commands
only affect the copy of the source tree you’re working on (your “working direc-
tory”), and some affect both. This table summarizes what you should expect
from each one and will hopefully serve as guide when you’re having doubts about
which command to use.

1But it affects the repository and working directory targeted by the push
2As for the other end, see apply

45



46 CHAPTER 6. DARCS COMMANDS

affects patches working directory
record yes no

unrecord yes no
rollback yes no
revert no yes

unrevert no yes
pull yes yes

unpull yes yes
apply yes yes
push1 no no
send2 no no
put3 no no

6.1 Common options to darcs commands

--help

Every COMMAND accepts --help as an argument, which tells it to provide a bit
of help. Among other things, this help always provides an accurate listing of
the options available with that command, and is guaranteed never to be out of
sync with the version of darcs you actually have installed (unlike this manual,
which could be for an entirely different version of darcs).

% darcs COMMAND --help

--disable

Every COMMAND accepts the --disable option, which can be used in _darcs/prefs/defaults
to disable some commands in the repository. This can be helpful if you want to
protect the repository from accidental use of advanced commands like unpull,
unrecord or amend-record.

--verbose

Most commands also accept the --verbose option, which tells darcs to provide
additional output. The amount of verbosity varies from command to command.

--repodir

Another common option is the --repodir option, which allows you to specify
the directory of the repository in which to perform the command. This option
is used with commands, such as whatsnew, that ordinarily would be performed



6.1. COMMON OPTIONS TO DARCS COMMANDS 47

within a repository directory, and allows you to use those commands without
actually being in the repository directory when calling the command. This is
useful when running darcs in a pipe, as might be the case when running apply
from a mailer.

Selecting patches Many commands operate on a patch or patches that have
already been recorded. There are a number of options that specify which patches
are selected for these operations: --patch, --match, --tag, and variants on
these, which for --patch are --patches, --from-patch, and --to-patch. The
--patch and --tag forms simply take (POSIX extended, aka egrep) regular
expressions and match them against tag and patch names. --match, described
below, allows more powerful patterns.

The plural forms of these options select all matching patches. The singular
forms select the last matching patch. The range (from and to) forms select
patches after or up to (both inclusive) the last matching patch.

These options use the current order of patches in the repository. darcs may
reorder patches, so this is not necessarily the order of creation or the order in
which patches were applied. However, as long as you are just recording patches
in your own repository, they will remain in order.

Match Currently --match accepts five primitive match types, although there
are plans to expand it to match more patterns. Also, note that the syntax is
still preliminary and subject to change.

The first match type accepts a literal string which is checked against the
patch name. The syntax is

darcs annotate --summary --match ’exact foo+bar’

This is useful for situations where a patch name contains characters that could
be considered special for regular expressions.

The second match type accepts a regular expression which is checked against
the patch name. The syntax is

darcs annotate --summary --match ’name foo’

If you want to include spaces in the regular expression, it must be enclosed
in double quotes ("), and currently there is no provision for escaping a double
quote, so you have to choose between matching double quotes and matching
spaces.

The third match type matches the darcs hash for each patch:

darcs annotate --summary --match \
’hash 20040403105958-53a90-c719567e92c3b0ab9eddd5290b705712b8b918ef’

This is intended to be used, for example, by programs allowing you to view
darcs repositories (e.g. CGI scripts like viewCVS).

The fourth match type accepts a regular expression which is checked against
the patch author. The syntax is



48 CHAPTER 6. DARCS COMMANDS

darcs annotate --summary --match ’author foo’

There is also support for matching by date. This is done using commands
such as

darcs annotate --summary --match ’date "last week"’
darcs annotate --summary --match ’date yesterday’
darcs annotate --summary --match ’date "today 14:00"’
darcs annotate --summary --match ’date "tea time yesterday"’
darcs annotate --summary --match ’date "3 days before last year at 17:00"’
darcs changes --from-match ’date "Sat Jun 30 11:31:30 EDT 2004"’

Note that you may also specify intervals, either in a small subset of English
or of the ISO 8601 format. If you use the ISO format, note that durations, when
specified alone, are interpreted as being relative to the current date and time.

darcs annotate --summary --match ’date "between 2004-03-12 and last week"’
darcs annotate --summary --match ’date "after 2005"’
darcs annotate --summary --match ’date "in the last 3 weeks"’
darcs annotate --summary --match ’date "P3M/2006-03-17"’
darcs annotate --summary --match ’date "2004-01-02/2006-03-17"’
darcs annotate --summary --match ’date "P2M6D"’

You may also prefer to combine date matching with a more specific pattern.

darcs annotate --summary --match ’date "last week" && name foo’

The --match pattern can include the logical operators &&, || and not, as
well as grouping of patterns with parentheses. For example

darcs annotate --summary --match ’name record && not name overrode’

--ignore-times

Darcs optimizes its operations by keeping track of the modification times of your
files. This dramatically speeds up commands such as whatsnew and record
which would otherwise require reading every file in the repository and compar-
ing it with a reference version. However, there are times when this can cause
problems, such as when running a series of darcs commands from a script, in
which case often a file will be modified twice in the same second, which can
lead to the second modification going unnoticed. The solution to such predica-
ments is the --ignore-times option, which instructs darcs not to trust the file
modification times, but instead to check each file’s contents explicitly.

--author



6.1. COMMON OPTIONS TO DARCS COMMANDS 49

Several commands need to be able to identify you. Conventionally, you provide
an email address for this purpose, which can include comments, e.g. David Roundy <droundy@abridgegame.org>.
The easiest way to do this is to define an environment variable EMAIL or DARCS_EMAIL
(with the latter overriding the former). You can also override this using the
--author flag to any command. Alternatively, you could set your email address
on a per-repository basis using the “defaults” mechanism for “ALL” commands,
as described in Appendix B. Or, you could specify the author on a per-repository
basis using the _darcs/prefs/author file as described in section 4.1.

Also, a global author file can be created in your home directory with the
name .darcs/author. This file overrides the contents of the environment vari-
ables, but a repository-specific author file overrides the global author file.

--dont-compress, --compress

By default, darcs commands that write patches to disk will compress the patch
files. If you don’t want this, you can choose the --dont-compress option, which
causes darcs not to compress the patch file.

--gui

Certain commands may have an optional graphical user interface. If such com-
mands are supported, you can activate the graphical user interface by calling
darcs with the --gui flag.

NOTE: The GUI is not currently functional, but is expected to re-appear in
a future release.

--dry-run

The --dry-run option will cause darcs not to actually take the specified action,
but only print what would have happened. Not all commands accept --dry-run,
but those that do should accept the --summary option.

--summary, --no-summary

The --summary option shows a summary of the patches that would have been
pulled/pushed/whatever. The format is similar to the output format of cvs update
and looks like this:

A ./added_but_not_recorded.c
A! ./added_but_not_recorded_conflicts.c
a ./would_be_added_if_look_for_adds_option_was_used.h



50 CHAPTER 6. DARCS COMMANDS

M ./modified.t -1 +1
M! ./modified_conflicts.t -1 +1

R ./removed_but_not_recorded.c
R! ./removed_but_not_recorded_conflicts.c

You can probably guess what the flags mean from the clever file names.

A is for files that have been added but not recorded yet.

a is for files found using the --look-for-adds option available for whatsnew
and record. They have not been added yet, but would be added auto-
matically if --look-for-adds were used with the next record command.

M is for files that have been modified in the working directory but not recorded
yet. The number of added and subtracted lines is also shown.

R is for files that have been removed, but the removal is not recorded yet.

An exclamation mark appears next to any option that has a conflict.

Resolution of conflicts To resolve conflicts using an external tool, you need
to specify a command to use, e.g.

--external-merge ’opendiff %1 %2 -ancestor %a -merge %o’.

The %1 and %2 are replaced with the two versions to be merged, %a is replaced
with the common ancestor of the two versions. Most importantly, %o is replaced
with the name of the output file that darcs will require to be created holding
the merged version. The above example works with the FileMerge.app tool that
comes with Apple’s developer tools. To use xxdiff, you would use

--external-merge ’xxdiff -m -O -M %o %1 %a %2’

To use kdiff3, you can use

--external-merge ’kdiff3 --output %o %a %1 %2’

Note that the command is split into space-separated words and the first one
is execed with the rest as arguments—it is not a shell command. Also the
substitution of the % escapes is only done on complete words. This means that
to use Emacs’ Ediff package for merging, for example, you need a helper script
as follows; call it emerge3, say:

#! /bin/sh
# External merge command for darcs, using Emacs Ediff, via server if possible.
# It needs args %1 %2 %a %o, i.e. the external merge command is, say,
# ‘emerge3 %1 %2 %a %o’.
test $# -eq 4 || exit 1



6.1. COMMON OPTIONS TO DARCS COMMANDS 51

form="(ediff-merge-files-with-ancestor"
while test $# -gt 0; do

count=$count.
if [ $count = .... ]; then

form=$form\ nil # Lisp STARTUP-HOOKS arg
fi
case $1 in # Worry about quoting -- escape " and \

*[\"\\]* ) form=$form\ \"$(echo $1 | sed -e’s/["\\]/\\\0/g’)\" ;;
*) form=$form\ \"$1\" ;;

esac
shift

done
form=$form’)’
( emacsclient --eval "$form" || # Emacs 22 server
gnudoit "$form" || # XEmacs/Emacs 21 server
emacs --eval "$form" || # Relatively slow to start up
xemacs -eval "$form" # Horribly slow to start up

) 2>/dev/null

It would be invoked like:

--external-merge ’emerge3 %1 %2 %a %o’

If you figure out how to use darcs with another merge tool, please let me
know what flags you used so I can mention it here.

Note that if you do use an external merge tool, most likely you will want
to add to your defaults file (_darcs/prefs/defaults or ~/.darcs/prefs, see
4.1) a line such as

ALL external-merge kdiff3 --output %o %a %1 %2

Note that the defaults file does not want quotes around the command.

--posthook=COMMAND, --no-posthook

To provide a command that should be run whenever a darcs command com-
pletes successfully, use --posthook to specify the command. This is useful for
people who want to have a command run whenever a patch is applied. Using
--no-posthook will disable running the command.

--prompt-posthook, --run-posthook

These options control prompting before running the posthook. Use --prompt-posthook
to force prompting before running the posthook command. For security reasons,
this is the default. When defining a posthook for apply, you will need to use
--run-posthook or else you will get an error, because the subprocess which
runs the apply command cannot prompt the user.



52 CHAPTER 6. DARCS COMMANDS

6.2 Options apart from darcs commands

--help, --extended-help

Calling darcs with just --help as an argument gives a brief summary of what
commands are available. The --extended-help option gives a more technical
summary of what the commands actually do.

--version, --exact-version

Calling darcs with the flag --version tells you the version of darcs you are
using. Calling darcs with the flag --exact-version gives the precise version
of darcs, even if that version doesn’t correspond to a released version number.
This is helpful with bug reports, especially when running with a “latest” version
of darcs.

--commands

Similarly calling darcs with only --commands gives a simple list of available com-
mands. This latter arrangement is primarily intended for the use of command-
line autocompletion facilities, as are available in bash.

6.3 Getting help

6.3.1 darcs help

You could also call help as a command. This is equivalent to calling darcs –help.
The --verbose argument is equivalent to the darcs option --extended-help If
you pass it another command as an argument, it will be equivalent to passing
the --help to that command. For example, darcs help query manifest is
equivalent to darcs query manifest --help.

Usage: darcs help [OPTION]... [<DARCS_COMMAND> [DARCS_SUBCOMMAND]]
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
Display help for darcs or a single commands. help displays usage information

for darcs in general or for a single command (for example, darcs help query
manifest). Note that –verbose prints extra help for darcs as a whole , but it
makes no difference for a single command.

6.4 Creating repositories

6.4.1 darcs initialize

Usage: darcs initialize [OPTION]...



6.4. CREATING REPOSITORIES 53

Options:
--plain-pristine-tree Use a plain pristine tree [DEFAULT]
--no-pristine-tree Use no pristine tree

Initialize a new source tree as a darcs repository.
Generally you will only call initialize once for each project you work on, and

calling it is just about the first thing you do. Just make sure you are in the
main directory of the project, and initialize will set up all the directories and
files darcs needs in order to start keeping track of revisions for your project.

The initialize follows the following procedure: It creates the directo-
ries _darcs, _darcs/current (or _darcs/pristine), _darcs/inventories,
_darcs/patches, and _darcs/prefs, and then creates the empty files _darcs/prefs/motd
(see Section 4.1) and _darcs/inventory. It then fills the contents of boring
and binaries in the _darcs/prefs directory with useful default values as
described in Sections 4.1 et seq. It is strongly recommended that you use
darcs initialize to do this, as this procedure may change in a future version
of darcs.

--no-pristine-tree

In order to save disk space, you can use initialize with the --no-pristine-tree
flag to create a repository with no pristine tree. Please see Section 3.6 for more
information.

6.4.2 darcs get

Usage: darcs get [OPTION]... <REPOSITORY> [<DIRECTORY>]
Options:

--repo-name DIRECTORY path of output directory
--partial get partial repository using checkpoint
--complete get a complete copy of the repository

--to-match PATTERN select changes up to a patch matching
PATTERN

--to-patch REGEXP select changes up to a patch matching
REGEXP

--tag REGEXP select tag matching REGEXP

--context FILENAME version specified by the context in
FILENAME

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--set-default set default repository [DEFAULT]
--no-set-default don’t set default repository
--set-scripts-executable make scripts executable
--dont-set-scripts-executable don’t make scripts executable
--plain-pristine-tree Use a plain pristine tree [DEFAULT]
--no-pristine-tree Use no pristine tree



54 CHAPTER 6. DARCS COMMANDS

If the remote repository and the current directory are in the same filesystem
and that filesystem supports hard links, get will create hard links for the patch
files, which means that the additional storage space needed will be minimal.
This is very good for your disk usage (and for the speed of running get), so if
you want multiple copies of a repository, I strongly recommend first running
darcs get to get yourself one copy, and then running darcs get on that copy
to make any more you like. The only catch is that the first time you run
darcs push or darcs pull from any of these second copies, by default they
will access your first copy—which may not be what you want.

You may specify the name of the repository created by providing a second
argument to get, which is a directory name.

--context, --tag, --to-patch, --to-match

If you want to get a specific version of a repository, you have a few options.
You can either use the --tag, --to-patch or --to-match options, or you can
use the --context=FILENAME option, which specifies a file containing a context
generated with darcs changes --context. This allows you (for example) to
include in your compiled program an option to output the precise version of the
repository from which it was generated, and then perhaps ask users to include
this information in bug reports.

Note that when specifying --to-patch or --to-match, you may get a ver-
sion of your code that has never before been seen, if the patches have gotten
themselves reordered. If you ever want to be able to precisely reproduce a given
version, you need either to tag it or create a context file.

6.4.3 darcs put

Usage: darcs put [OPTION]... <NEW REPOSITORY>
Options:
-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output

--repodir DIRECTORY specify the repository directory in which to
run

--to-match PATTERN select changes up to a patch matching
PATTERN

--to-patch REGEXP select changes up to a patch matching
REGEXP

--tag REGEXP select tag matching REGEXP

--context FILENAME version specified by the context in
FILENAME

--apply-as USERNAME apply patch as another user using sudo

--apply-as-myself
don’t use sudo to apply as another user
[DEFAULT]

--plain-pristine-tree Use a plain pristine tree [DEFAULT]
--no-pristine-tree Use no pristine tree



6.5. MODIFYING THE CONTENTS OF A REPOSITORY 55

Put is the opposite of get. Put copies the content of the current repository
and puts it in a newly created repository.

WARNING: Put is far less optimized than get, especially for local reposito-
ries. We recommend avoiding use of put except for small repositories.

Put is used when you already have a repository and want to make a copy of
it. A typical use-case is when you want to branch your project.

Put works by first initializing a repository. If the new repository is not on the
local file system then darcs will login to the remote host and run darcs init
there. After the new repository is created all selected patches will be pushed
just as with the command push.

--apply-as

If you give the --apply-as flag, darcs will use sudo to apply the changes as
a different user. This can be useful if you want to set up a system where several
users can modify the same repository, but you don’t want to allow them full
write access. This isn’t secure against skilled malicious attackers, but at least
can protect your repository from clumsy, inept or lazy users.

--context, --tag, --to-patch, --to-match

If you want to put a specific version of a repository, you have a few options.
You can either use the --tag, --to-patch or --to-match options, or you can
use the --context=FILENAME option, which specifies a file containing a context
generated with darcs changes --context. This allows you (for example) to
include in your compiled program an option to output the precise version of the
repository from which it was generated, and then perhaps ask users to include
this information in bug reports.

Note that when specifying --to-patch or --to-match, you may get a ver-
sion of your code that has never before been seen, if the patches have gotten
themselves reordered. If you ever want to be able to precisely reproduce a given
version, you need either to tag it or create a context file.

6.5 Modifying the contents of a repository

6.5.1 darcs add

Usage: darcs add [OPTION]... <FILE or DIRECTORY> ...

Options:



56 CHAPTER 6. DARCS COMMANDS

--boring don’t skip boring files
--case-ok don’t refuse to add files differing only in case

-r --recursive add contents of subdirectories
--not-recursive don’t add contents of subdirectories

--date-trick
add files with date appended to avoid
conflict. [EXPERIMENTAL]

--no-date-trick
don’t use experimental date appending trick.
[DEFAULT]

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output

--repodir DIRECTORY specify the repository directory in which to
run

--dry-run don’t actually take the action
Add needs to be called whenever you add a new file or directory to your

project. Of course, it also needs to be called when you first create the project,
to let darcs know which files should be kept track of.

Darcs will refuse to add a file or directory that differs from an existing one
only in case. This is because the HFS+ file system used on MacOS treats such
files as being one and the same.

You can not add symbolic links to darcs. If you try to do that, darcs will
refuse and print an error message. Perhaps you want to make symbolic links to
the files in darcs instead?

--boring

By default darcs will ignore all files that match any of the boring patterns.
If you want to add such a file anyway you must use the --boring option.

--date-trick

The --date-trick option allows you to enable an experimental trick to
make add conflicts, in which two users each add a file or directory with the
same name, less problematic. While this trick is completely safe, it is not clear
to what extent it is beneficial.

6.5.2 darcs remove

Usage: darcs remove [OPTION]... <FILE or DIRECTORY> ...
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output

--repodir DIRECTORY specify the repository directory in which to
run

Remove should be called when you want to remove a file from your project,
but don’t actually want to delete the file. Otherwise just delete the file or



6.5. MODIFYING THE CONTENTS OF A REPOSITORY 57

directory, and darcs will notice that it has been removed. Be aware that the
file WILL be deleted from any other copy of the repository to which you later
apply the patch.

6.5.3 darcs mv

Usage: darcs mv [OPTION]... [FILE or DIRECTORY]...
Options:

--case-ok don’t refuse to add files differing only in case
-v --verbose give verbose output

--standard-verbosity don’t give verbose output

--repodir DIRECTORY specify the repository directory in which to
run

Darcs mv needs to be called whenever you want to move files or directories.
Unlike remove, mv actually performs the move itself in your working copy. This
is why “mv” isn’t called “move”, since it is really almost equivalent to the unix
command “mv”. I could add an equivalent command named “move” for those
who like vowels.

--case-ok

Darcs mv will by default refuse to rename a file if there already exists a file
having the same name apart from case. This is because doing so could create a
repository that could not be used on file systems that are case insensitive (such
as Apples HFS+). You can override this by with the flag --case-ok.

6.5.4 darcs replace

Usage: darcs replace [OPTION]... <OLD> <NEW> <FILE> ...
Options:

--token-chars "[CHARS]" define token to contain these characters

--force
proceed with replace even if ’new’ token
already exists

--no-force don’t force the replace if it looks scary
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
Replace allows you to change a specified token wherever it occurs in the

specified files. The replace is encoded in a special patch and will merge as
expected with other patches. Tokens here are defined by a regexp specifying the
characters which are allowed. By default a token corresponds to a C identifier.

The default regexp is [A-Za-z_0-9]), and if one of your tokens contains
a ‘-’ or ‘.’, you will then (by default) get the “filename” regexp, which is
[A-Za-z_0-9\-\.].

--token-chars



58 CHAPTER 6. DARCS COMMANDS

If you prefer to choose a different set of characters to define your token
(perhaps because you are programming in some other language), you may
do so with the --token-chars option. You may prefer to define tokens in
terms of delimiting characters instead of allowed characters using a flag such as
--token-chars ’[^ \n\t]’, which would define a token as being white-space
delimited.

If you do choose a non-default token definition, I recommend using _darcs/prefs/defaults
to always specify the same --token-chars, since your replace patches will be
better behaved (in terms of commutation and merges) if they have tokens de-
fined in the same way.

When using darcs replace, the “new” token may not already appear in the
file—if that is the case, the replace change would not be invertible. This limi-
tation holds only on the already-recorded version of the file.

There is a potentially confusing difference, however, when a replace is used
to make another replace possible:

% darcs replace newtoken aaack ./foo.c
% darcs replace oldtoken newtoken ./foo.c
% darcs record

will be valid, even if newtoken and oldtoken are both present in the recorded
version of foo.c, while the sequence

% [manually edit foo.c replacing newtoken with aaack]
% darcs replace oldtoken newtoken ./foo.c

will fail because “newtoken” still exists in the recorded version of foo.c. The
reason for the difference is that when recording, a “replace” patch always is
recorded before any manual changes, which is usually what you want, since
often you will introduce new occurrences of the “newtoken” in your manual
changes. In contrast, multiple “replace” changes are recorded in the order in
which they were made.

6.6 Working with changes

6.6.1 darcs record

Usage: darcs record [OPTION]... [FILE or DIRECTORY]...

Options:



6.6. WORKING WITH CHANGES 59

-m --patch-name PATCHNAME name of patch
-A --author EMAIL specify author id

--logfile FILE give patch name and comment in file
--delete-logfile delete the logfile when done

-v --verbose give verbose output
--standard-verbosity don’t give verbose output
--no-test don’t run the test script
--test run the test script
--leave-test-directory don’t remove the test directory
--remove-test-directory remove the test directory
--compress create compressed patches
--dont-compress don’t create compressed patches

-a --all answer yes to all patches
--pipe expect to receive input from a pipe
--interactive prompt user interactively
--ask-deps ask for extra dependencies
--no-ask-deps don’t ask for extra dependencies
--edit-long-comment Edit the long comment by default
--skip-long-comment Don’t give a long comment
--prompt-long-comment Prompt for whether to edit the long comment
--ignore-times don’t trust the file modification times

-l --look-for-adds
In addition to modifications, look for files
that are not boring, and thus are potentially
pending addition

--dont-look-for-adds
Don’t look for any files or directories that
could be added, and don’t add them
automatically

--repodir DIRECTORY specify the repository directory in which to
run

If you provide one or more files or directories as additional arguments to
record, you will only be prompted to changes in those files or directories. Each
patch is given a name, which typically would consist of a brief description of
the changes. This name is later used to describe the patch. The name must
fit on one line (i.e. cannot have any embedded newlines). If you have more
to say, stick it in the log. The patch is also flagged with the author of the
change, taken by default from the DARCS_EMAIL environment variable, and if
that doesn’t exist, from the EMAIL environment variable. The date on which
the patch was recorded is also included. Currently there is no provision for
keeping track of when a patch enters a given repository. Finally, each changeset
should have a full log (which may be empty). This log is for detailed notes which
are too lengthy to fit in the name. If you answer that you do want to create a
comment file, darcs will open an editor so that you can enter the comment in.
The choice of editor proceeds as follows. If one of the $DARCS_EDITOR, $VISUAL
or $EDITOR environment variables is defined, its value is used (with precedence
proceeding in the order listed). If not, “vi”, “emacs”, “emacs -nw” and “nano”
are tried in that order.



60 CHAPTER 6. DARCS COMMANDS

--logfile

If you wish, you may specify the patch name and log using the --logfile
flag. If you do so, the first line of the specified file will be taken to be the
patch name, and the remainder will be the “long comment”. This feature can
be especially handy if you have a test that fails several times on the record (thus
aborting the record), so you don’t have to type in the long comment multiple
times. The file’s contents will override the --patch-name option.

--ask-deps

Each patch may depend on any number of previous patches. If you choose
to make your patch depend on a previous patch, that patch is required to be
applied before your patch can be applied to a repository. This can be used, for
example, if a piece of code requires a function to be defined, which was defined
in an earlier patch.

If you want to manually define any dependencies for your patch, you can use
the --ask-deps flag, and darcs will ask you for the patch’s dependencies.

--no-test, --test

If you configure darcs to run a test suite, darcs will run this test on the
recorded repository to make sure it is valid. Darcs first creates a pristine copy
of the source tree (in a temporary directory), then it runs the test, using its
return value to decide if the record is valid. If it is not valid, the record will be
aborted. This is a handy way to avoid making stupid mistakes like forgetting
to ‘darcs add’ a new file. It also can be tediously slow, so there is an option
(--no-test) to skip the test.

--pipe

If you run record with the --pipe option, you will be prompted for the patch
date, the author, the patch name, and the long comment. The long comment
will extend until the end of file of stdin is reached (ctrl-D on Unixy systems, ctrl-
Z on systems running a Microsoft OS). This interface is intended for scripting
darcs, in particular for writing repository conversion scripts. The prompts are
intended mostly as a useful guide (since scripts won’t need them), to help you
understand the format in which to provide the input.

--interactive



6.6. WORKING WITH CHANGES 61

By default, record works interactively. Probably the only thing you need
to know about using this is that you can press ? at the prompt to be shown a
list of the rest of the options and what they do. The rest should be clear from
there. Here’s a “screenshot” to demonstrate:

hunk ./hello.pl +2
+#!/usr/bin/perl
+print "Hello World!\n";
Shall I record this patch? (2/2) [ynWsfqadjk], or ? for help: ?
How to use record...
y: record this patch
n: don’t record it
w: wait and decide later, defaulting to no

s: don’t record the rest of the changes to this file
f: record the rest of the changes to this file

d: record selected patches
a: record all the remaining patches
q: cancel record

j: skip to next patch
k: back up to previous patch
h or ?: show this help

<Space>: accept the current default (which is capitalized)

What you can’t see in that “screenshot” is that darcs will also try to use color
in your terminal to make the output even easier to read.

6.6.2 darcs pull

Usage: darcs pull [OPTION]... [REPOSITORY]

Options:



62 CHAPTER 6. DARCS COMMANDS

--matches PATTERN select patches matching PATTERN
-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-a --all answer yes to all patches

--interactive prompt user interactively
--intersection take intersection of all repositories
--union take union of all repositories [default]
--external-merge COMMAND Use external tool to merge conflicts
--compress create compressed patches
--dont-compress don’t create compressed patches
--test run the test script
--no-test don’t run the test script
--dry-run don’t actually take the action

-s --summary summarize changes
--no-summary don’t summarize changes

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--ignore-times don’t trust the file modification times
--no-deps don’t automatically fulfill dependencies
--set-default set default repository [DEFAULT]
--no-set-default don’t set default repository

--repodir DIRECTORY specify the repository directory in which to
run

--set-scripts-executable make scripts executable
--dont-set-scripts-executable don’t make scripts executable

Pull is used to bring changes made in another repository into the current
repository (that is, either the one in the current directory, or the one specified
with the –repodir option). Pull allows you to bring over all or some of the
patches that are in that repository but not in this one. Pull accepts an argument,
which is the URL from which to pull, and when called without an argument,
pull will use the repository from which you have most recently either pushed or
pulled.

--interactive, --union [default]

If you provide more than one repository as an argument to pull, darcs’ behav-
ior is determined by the presence of the --intersection flag. The default
(--union) behavior is to pull any patches that are in any of the specified repos-
itories. If you instead specify the --intersection flag, darcs will only pull
those patches which are present in all source repositories.

--external-merge

You can use an external interactive merge tool to resolve conflicts with the
flag --external-merge. For more details see subsection 6.1.



6.6. WORKING WITH CHANGES 63

--matches, --no-deps, --patches, --tags

The --patches, --matches, and --tags options can be used to select which
patches to pull, as described in subsection 6.1. darcs will silently pull along any
other patches upon which the selected patches depend. So --patches bugfix
means “pull all the patches with ‘bugfix’ in their name, along with any patches
they require.” If you really only want the patches with ‘bugfix’ in their name,
you should use the --no-deps option, which makes darcs pull in only the se-
lected patches which have no dependencies (apart from other selected patches).

--no-test, --test

If you specify the --test option, pull will run the test (if a test exists) on a
scratch copy of the repository contents prior to actually performing the pull. If
the test fails, the pull will be aborted.

--verbose

Adding the --verbose option causes another section to appear in the out-
put which also displays a summary of patches that you have and the remote
repository lacks. Thus, the following syntax can be used to show you all the
patch differences between two repositories:

darcs pull --dry-run --verbose

6.6.3 darcs push

Usage: darcs push [OPTION]... [REPOSITORY]

Options:



64 CHAPTER 6. DARCS COMMANDS

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-a --all answer yes to all patches

--interactive prompt user interactively
--apply-as USERNAME apply patch as another user using sudo

--apply-as-myself
don’t use sudo to apply as another user
[DEFAULT]

--sign sign the patch with your gpg key
--sign-as KEYID sign the patch with a given keyid

--sign-ssl IDFILE
sign the patch using openssl with a given
private key

--dont-sign do not sign the patch
--dry-run don’t actually take the action

-s --summary summarize changes
--no-summary don’t summarize changes

--repodir DIRECTORY specify the repository directory in which to
run

--set-default set default repository [DEFAULT]
--no-set-default don’t set default repository

Push is the opposite of pull. Push allows you to copy changes from the
current repository into another repository.

For obvious reasons, you can only push to repositories to which you have
write access. In addition, you can only push to repos that you access either on
the local file system or with ssh. In order to apply with ssh, darcs must also
be installed on the remote computer. The command invoked to run ssh may
be configured by the DARCS_SSH environment variable (see subsection 4.2). The
command invoked via ssh is always darcs, i.e. the darcs executable must be in
the default path on the remote machine.

Push works by creating a patch bundle, and then running darcs apply in the
target repository using that patch bundle. This means that the default options
for apply in the target repository (such as, for example, --test) will affect the
behavior of push. This also means that push is somewhat less efficient than
pull.

When you receive an error message such as

bash: darcs: command not found

then this means that the darcs on the remote machine could not be started.
Make sure that the darcs executable is called darcs and is found in the default
path. The default path can be different in interactive and in non-interactive
shells. Say

ssh login@remote.machine darcs

to try whether the remote darcs can be found, or



6.6. WORKING WITH CHANGES 65

ssh login@remote.machine ’echo $PATH’

(note the single quotes) to check the default path.

--apply-as

If you give the --apply-as flag, darcs will use sudo to apply the changes as
a different user. This can be useful if you want to set up a system where several
users can modify the same repository, but you don’t want to allow them full
write access. This isn’t secure against skilled malicious attackers, but at least
can protect your repository from clumsy, inept or lazy users.

--matches, --patches, --tags

The --patches, --matches, and --tags options can be used to select which
patches to push, as described in subsection 6.1. darcs will silently push along
any other patches upon which the selected patches depend.

When there are conflicts, the behavior of push is determined by the default
flags to apply in the target repository. Most commonly, for pushed-to reposito-
ries, you’d like to have --dont-allow-conflicts as a default option to apply
(by default, it is already the default. . . ). If this is the case, when there are
conflicts on push, darcs will fail with an error message. You can then resolve
by pulling the conflicting patch, recording a resolution and then pushing the
resolution together with the conflicting patch.

Darcs does not have an explicit way to tell you which patch conflicted, only
the file name. You may want to pull all the patches from the remote repository
just to be sure. If you don’t want to do this in your working directory, you can
create another darcs working directory for this purpose.

If you want, you could set the target repository to use --allow-conflicts.
In this case conflicting patches will be applied, but the conflicts will not be
marked in the working directory.

If, on the other hand, you have --mark-conflicts specified as a default flag
for apply in the target repository, when there is a conflict, it will be marked in
the working directory of the target repository. In this case, you should resolve
the conflict in the target repository itself.

6.6.4 darcs send

Usage: darcs send [OPTION]... [REPOSITORY]

Options:



66 CHAPTER 6. DARCS COMMANDS

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-a --all answer yes to all patches

--interactive prompt user interactively
--from EMAIL specify email address

-A --author EMAIL specify author id
--to EMAIL specify destination email

--cc EMAIL
mail results to additional EMAIL(s).
Requires –reply

--subject SUBJECT specify mail subject
-o --output FILE specify output filename

--sign sign the patch with your gpg key
--sign-as KEYID sign the patch with a given keyid

--sign-ssl IDFILE
sign the patch using openssl with a given
private key

--dont-sign do not sign the patch

-u --unified output patch in a darcs-specific format
similar to diff -u

--dry-run don’t actually take the action
-s --summary summarize changes

--no-summary don’t summarize changes
--context FILENAME send to context stored in FILENAME
--edit-description edit the patch bundle description
--dont-edit-description don’t edit the patch bundle description
--set-default set default repository [DEFAULT]
--no-set-default don’t set default repository

--repodir DIRECTORY specify the repository directory in which to
run

--sendmail-command COMMAND specify sendmail command
Send is used to prepare a bundle of patches that can be applied to a target

repository. Send accepts the URL of the repository as an argument. When
called without an argument, send will use the most recent repository that was
either pushed to, pulled from or sent to. By default, the patch bundle is sent
by email, although you may save it to a file.

--unified

If you want to create patches having context, you can use the --unified
option, which create output vaguely reminiscent of diff -u. This format is still
darcs-specific and should not be expected to apply cleanly by patch.

--output, --to, --cc



6.6. WORKING WITH CHANGES 67

The --output and --to flags determine what darcs does with the patch
bundle after creating it. If you provide an --output argument, the patch bundle
is saved to that file. If you give one or more --to arguments, the bundle of
patches is emailed to those addresses.

If you don’t provide either a --output or a --to flag, darcs will look at the
contents of the _darcs/prefs/email file in the target repository (if it exists),
and send the patch by email to that address. In this case, you may use the --cc
option to specify additional recipients without overriding the default repository
email address.

If there is no email address associated with the repository, darcs will prompt
you for an email address.

--subject

Use the --subject flag to set the subject of the e-mail to be sent. If you
don’t provide a subject on the command line, darcs will make one up based on
names of the patches in the patch bundle.

--matches, --patches, --tags

The --patches, --matches, and --tags options can be used to select which
patches to send, as described in subsection 6.1. darcs will silently send along
any other patches upon which the selected patches depend.

--edit-description

If you want to include a description or explanation along with the bundle
of patches, you need to specify the --edit-description flag, which will cause
darcs to open up an editor with which you can compose a message to go along
with your patches.

--sendmail-command

If you want to use a command different from the default one for sending
email, you need to specify a command line with the --sendmail-command op-
tion. The command line can contain some format specifiers which are replaced
by the actual values. Accepted format specifiers are %s for subject, %t for to, %c
for cc, %b for the body of the mail, %f for from, %a for the patch bundle and the
same specifiers in uppercase for the URL-encoded values. Additionally you can
add %< to the end of the command line if the command expects the complete
email message on standard input. E.g. the command lines for evolution and
msmtp look like this:

evolution "mailto:%T?subject=%S&attach=%A&cc=%C&body=%B"
msmtp %t %<



68 CHAPTER 6. DARCS COMMANDS

6.6.5 darcs apply

Usage: darcs apply [OPTION]... <PATCHFILE>

Options:

--verify PUBRING verify that the patch was signed by a key in
PUBRING

--verify-ssl KEYS verify using openSSL with authorized keys
from file KEYS

--no-verify don’t verify patch signature

--reply FROM reply to email-based patch using FROM
address

--cc EMAIL
mail results to additional EMAIL(s).
Requires –reply

-v --verbose give verbose output
--standard-verbosity don’t give verbose output
--ignore-times don’t trust the file modification times
--compress create compressed patches
--dont-compress don’t create compressed patches

-a --all answer yes to all patches
--interactive prompt user interactively
--mark-conflicts mark conflicts
--allow-conflicts allow conflicts, but don’t mark them
--external-merge COMMAND use external tool to merge conflicts

--no-resolve-conflicts
equivalent to –dont-allow-conflicts, for
backwards compatibility

--dont-allow-conflicts
fail on patches that create conflicts
[DEFAULT]

--no-test don’t run the test script
--test run the test script

--happy-forwarding forward unsigned messages without extra
header

--leave-test-directory don’t remove the test directory
--remove-test-directory remove the test directory

--repodir DIRECTORY specify the repository directory in which to
run

--sendmail-command COMMAND specify sendmail command
--set-scripts-executable make scripts executable
--dont-set-scripts-executable don’t make scripts executable

Apply is used to apply a bundle of patches to this repository. Such a bundle
may be created using send.

Darcs apply accepts a single argument, which is the name of the patch file to
be applied. If you omit this argument, the patch is read from standard input.4

This allows you to use apply with a pipe from your email program, for example.

--verify

4One caveat: don’t name your patch file “magic darcs standard input”, or darcs will read
from standard input instead!



6.6. WORKING WITH CHANGES 69

If you specify the --verify PUBRING option, darcs will check that the patch
was GPG-signed by a key which is in PUBRING and will refuse to apply the patch
otherwise.

--cc, --reply

If you give the --reply FROM option to darcs apply, it will send the results
of the application to the sender of the patch. This only works if the patch is in
the form of email with its headers intact, so that darcs can actually know the
origin of the patch. The reply email will indicate whether or not the patch was
successfully applied. The FROM flag is the email address that will be used as the
“from” address when replying. If the darcs apply is being done automatically,
it is important that this address not be the same as the address at which the
patch was received, in order to avoid automatic email loops.

If you want to also send the apply email to another address (for example, to
create something like a “commits” mailing list), you can use the --cc option to
specify additional recipients. Note that the --cc option requires the --reply
option, which provides the “From” address.

The --reply feature of apply is intended primarily for two uses. When
used by itself, it is handy for when you want to apply patches sent to you by
other developers so that they will know when their patch has been applied. For
example, in my .muttrc (the config file for my mailer) I have:

macro pager A "<pipe-entry>darcs apply --verbose \
--reply droundy@abridgegame.org --repodir ~/darcs

which allows me to apply a patch to darcs directly from my mailer, with the
originator of that patch being sent a confirmation when the patch is successfully
applied. NOTE: In an attempt to make sure no one else can read your email,
mutt seems to set the umask such that patches created with the above macro
are not world-readable, so use it with care.

When used in combination with the --verify option, the --reply option
allows for a nice pushable repository. When these two options are used together,
any patches that don’t pass the verify will be forwarded to the FROM address
of the --reply option. This allows you to set up a repository so that anyone
who is authorized can push to it and have it automatically applied, but if a
stranger pushes to it, the patch will be forwarded to you. Please (for your own
sake!) be certain that the --reply FROM address is different from the one used
to send patches to a pushable repository, since otherwise an unsigned patch will
be forwarded to the repository in an infinite loop.

If you use darcs apply --verify PUBRING --reply to create a pushable
repository by applying patches automatically as they are received by email, you
will also want to use the --dont-allow-conflicts option.

--dont-allow-conflicts



70 CHAPTER 6. DARCS COMMANDS

The --dont-allow-conflicts flag causes apply to fail when applying a patch
would cause conflicts. This flag is recommended on repositories which will be
pushed to or sent to.

--allow-conflicts

--allow-conflicts will allow conflicts, but will keep the local and recorded
versions in sync on the repository. This means the conflict will exist in both
locations until it is resolved.

--mark-conflicts

--mark-conflicts will add conflict markers to illustrate the the conflict.

--external-merge

You can use an external interactive merge tool to resolve conflicts with the
flag --external-merge. For more details see subsection 6.1.

--all, --gui, --interactive

If you provide the --interactive or --gui flag, darcs will ask you for each
change in the patch bundle whether or not you wish to apply that change. The
opposite is the --all flag, which can be used to override an interactive or
gui which might be set in your “defaults” file.

NOTE: The GUI is not currently functional, but is expected to re-appear in
a future release.

--sendmail-command

If you want to use a command different from the default one for sending mail,
you need to specify a command line with the --sendmail-command option. The
command line can contain the format specifier %t for to and you can add %<
to the end of the command line if the command expects the complete mail on
standard input. For example, the command line for msmtp looks like this:

msmtp %t %<

--no-test, --test

If you specify the --test option, apply will run the test (if a test exists)
prior to applying the patch. If the test fails, the patch is not applied. In this
case, if the --reply option was used, the results of the test are sent in the
reply email. You can also specify the --no-test option, which will override
the --test option, and prevent the test from being run. This is helpful when
setting up a pushable repository, to keep users from running code.



6.7. SEEING WHAT YOU’VE DONE 71

6.7 Seeing what you’ve done

6.7.1 darcs whatsnew

Usage: darcs whatsnew [OPTION]... [FILE or DIRECTORY]...

Options:

-v --verbose give verbose output
--standard-verbosity don’t give verbose output

-s --summary summarize changes
--no-summary don’t summarize changes

-u --unified output patch in a darcs-specific format
similar to diff -u

--ignore-times don’t trust the file modification times

-l --look-for-adds
In addition to modifications, look for files
that are not boring, and thus are potentially
pending addition

--dont-look-for-adds
Don’t look for any files or directories that
could be added, and don’t add them
automatically

--boring don’t skip boring files

--repodir DIRECTORY specify the repository directory in which to
run

Display unrecorded changes in the working copy. whatsnew gives you a
view of what changes you’ve made in your working copy that haven’t yet been
recorded. The changes are displayed in darcs patch format. Note that –look-
for-adds implies –summary usage. darcs whatsnew will return a non-zero value
if there are no changes, which can be useful if you just want to see in a script
if anything has been modified. If you want to see some context around your
changes, you can use the -u option, to get output similar to the unidiff format.

If you give one or more file or directory names as an argument to whatsnew,
darcs will output only changes to those files or to files in those directories.

6.7.2 darcs changes

Usage: darcs changes [OPTION]... [FILE or DIRECTORY]...

Options:



72 CHAPTER 6. DARCS COMMANDS

--to-match PATTERN select changes up to a patch matching
PATTERN

--to-patch REGEXP select changes up to a patch matching
REGEXP

--to-tag REGEXP select changes up to a tag matching
REGEXP

--from-match PATTERN
select changes starting with a patch
matching PATTERN

--from-patch REGEXP
select changes starting with a patch
matching REGEXP

--from-tag REGEXP select changes starting with a tag matching
REGEXP

--last NUMBER select the last NUMBER patches
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP

--context give output suitable for get –context
--xml-output generate XML formatted output
--human-readable give human-readable output

-s --summary summarize changes
--no-summary don’t summarize changes

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--reverse show changes in reverse order
--repo URL specify the repository URL

-a --all answer yes to all patches
--interactive prompt user interactively

Changes gives a changelog-style summary of the repository history, including
options for altering how the patches are selected and displayed.

When given one or more files or directories as an argument, changes lists
only those patches which affect those files or the contents of those directories
or, of course, the directories themselves. This includes changes that happened
to files before they were moved or renamed.

--from-match, --from-patch, --from-tag

If changes is given a --from-patch, --from-match, or --from-tag option,
it outputs only those changes since that tag or patch.

Without any options to limit the scope of the changes, history will be dis-
played going back as far as possible.

--context, --human-readable, --xml-output

When given the --context flag, darcs changes outputs sufficient information
to allow the current state of the repository to be recreated at a later date. This



6.8. MORE ADVANCED COMMANDS 73

information should generally be piped to a file, and then can be used later in
conjunction with darcs get --context to recreate the current version. Note
that while the --context flag may be used in conjunction with --xml-output
or --human-readable, in neither case will darcs get be able to read the output.
On the other hand, sufficient information will be output for a knowledgeable
human to recreate the current state of the repository.

6.8 More advanced commands

6.8.1 darcs tag

Usage: darcs tag [OPTION]... [TAGNAME]
Options:
-m --patch-name PATCHNAME name of patch
-A --author EMAIL specify author id

--checkpoint create a checkpoint file
--compress create compressed patches
--dont-compress don’t create compressed patches
--pipe expect to receive input from a pipe
--interactive prompt user interactively

-v --verbose give verbose output
--standard-verbosity don’t give verbose output

Tag is used to name a version of this repository (i.e. the whole tree). Tag dif-
fers from record in that it doesn’t record any new changes, and it always depends
on all patches residing in the repository when it is tagged. This means that one
can later reproduce this version of the repository by calling, for example:

% darcs get --tag "darcs 3.14" REPOLOCATION

Each tagged version has a version name. The version is also flagged with the
person who tagged it (taken by default from the ‘DARCS EMAIL’ or ‘EMAIL’
environment variable). The date is also included in the version information.

A tagged version automatically depends on all patches in the repository.
This allows you to later reproduce precisely that version. The tag does this by
depending on all patches in the repository, except for those which are depended
upon by other tags already in the repository. In the common case of a sequential
series of tags, this means that the tag depends on all patches since the last tag,
plus that tag itself.

--checkpoint

The --checkpoint option allows the tag be used later with the --partial flag
to get or check.

A partial repository only contains patches from after the checkpoint. A
partial repository works just like a normal repository, but any command that
needs to look at the contents of a missing patch will complain and abort.



74 CHAPTER 6. DARCS COMMANDS

--pipe

If you run tag with the --pipe option, you will be prompted for the tag name
and date. This interface is intended for scripting darcs, in particular for writing
repository conversion scripts. The prompts are intended mostly as useful guide
(since scripts won’t need them), to help you understand the format in which to
provide the input. Here’s an example of what the --pipe prompts looks like:

What is the date? Mon Nov 15 13:38:01 EST 2004
Who is the author? David Roundy
What is the version name? 3.0
Finished tagging patch ’TAG 3.0’

Using tag creates an entry in the repository history just like record. It will
show up with darcs changes appearing in the format:

tagged My Tag Name

Because the word ‘tagged’ is always prepended to the tag name, you can
search for tag names by simply passing the output of darcs changes through
grep:

darcs changes | grep tagged

The above example would display all the tag names in use in the repository.

6.8.2 darcs setpref

Usage: darcs setpref [OPTION]... <PREF> <VALUE>
Options:

Usage example:

% darcs setpref test "echo I am not really testing anything."

Setpref allows you to set a preference value in a way that will propagate to
other repositories.

Valid preferences are: test predist boringfile binariesfile. If you just want to
set the pref value in your repository only, you can just edit “_darcs/prefs/prefs”.
Changes you make in that file will be preserved.

The “_darcs/prefs/prefs” holds the only preferences information that can
propagate between repositories by pushes and pulls, and the only way this hap-
pens is when the setprefs command is used. Note that although prefs settings
are included in patches, they are not fully version controlled. In particular,
depending on the order in which a series of merges is performed, you may end
up with a different final prefs configuration. In practice I don’t expect this to
be a problem, as the prefs usually won’t be changed very often.

The following values are valid preferences options which can be configured
using setpref:



6.8. MORE ADVANCED COMMANDS 75

• “test” — the command to run as a test script.

• “predist” — a command to run prior to tarring up a distribution tarball.
Typically this would consist of autoconf and/or automake.

• “boringfile” — the name of a file to read instead of the “boring” prefs file.

• “binariesfile” — the name of a file to read instead of the “binaries” prefs
file.

6.8.3 darcs check

Usage: darcs check [OPTION]...
Options:

--complete check the entire repository
--partial check patches since latest checkpoint

-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
--no-test don’t run the test script
--test run the test script
--leave-test-directory don’t remove the test directory
--remove-test-directory remove the test directory

--repodir DIRECTORY specify the repository directory in which to
run

Check the repository for consistency. Check verifies that the patches stored
in the repository, when successively applied to an empty tree, properly recreate
the stored pristine tree.

--complete, --partial

If you have a checkpoint of the repository (as is the case if you got the
repository originally using darcs get --partial), by default darcs check will
only verify the contents since the most recent checkpoint. You can change this
behavior using the --complete flag.

If you like, you can configure your repository to be able to run a test suite
of some sort. You can do this by using “setpref” to set the “test” value to be a
command to run, e.g.

% darcs setpref test "sh configure && make && make test"

Or, if you want to define a test specific to one copy of the repository, you could
do this by editing the file _darcs/prefs/prefs.

--leave-test-directory, --remove-test-directory



76 CHAPTER 6. DARCS COMMANDS

Normally darcs deletes the directory in which the test was run afterwards.
Sometimes (especially when the test fails) you’d prefer to be able to be able to
examine the test directory after the test is run. You can do this by specifying the
--leave-test-directory flag. Alas, there is no way to make darcs leave the
test directory only if the test fails. The opposite of --leave-test-directory is
--remove-test-directory, which could come in handy if you choose to make
--leave-test-directory the default (see section 4.1).

--no-test

If you just want to check the consistency of your repository without running
the test, you can call darcs check with the --no-test option.

6.8.4 darcs optimize

Usage: darcs optimize [OPTION]...
Options:

--checkpoint create a checkpoint file
--compress create compressed patches
--dont-compress don’t create compressed patches
--uncompress uncompress patches

-t --tag TAGNAME name of version to checkpoint
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--modernize-patches rewrite all patches in current darcs format
--reorder-patches reorder the patches in the repository
--sibling URL specify a sibling directory
--relink relink random internal data to a sibling
--relink-pristine relink pristine tree (not recommended)

Optimize can help to improve the performance of your repository in a number
of cases.

Optimize always writes out a fresh copy of the inventory that minimizes
the amount of inventory that need be downloaded when people pull from the
repository.

Specifically, it breaks up the inventory on the most recent tag. This speeds
up most commands when run remotely, both because a smaller file needs to be
transfered (only the most recent inventory). It also gives a guarantee that all
the patches prior to a given tag are included in that tag, so less commutation
and history traversal is needed. This latter issue can become very important in
large repositories.

--checkpoint, --tag

If you use the --checkpoint option, optimize creates a checkpoint patch for
a tag. You can specify the tag with the --tag option, or just let darcs choose



6.8. MORE ADVANCED COMMANDS 77

the most recent tag. Note that optimize --checkpoint will fail when used on
a “partial” repository. Also, the tag that is to be checkpointed must not be
preceded by any patches that are not included in that tag. If that is the case,
no checkpointing is done.

The created checkpoint is used by the --partial flag to get and check.
This allows for users to retrieve a working repository with limited history with
a savings of disk space and bandwidth.

--compress, --dont-compress, --uncompress

Some compression options are available, and are independent of the --checkpoint
option.

By default the patches in the repository are compressed. These use less
disk space, which translates into less bandwidth if the repository is accessed
remotely. Note that patches will always have the “.gz” extension whether they
are compressed or not.

You may want to uncompress the patches when you’ve got enough disk space
but are running out of physical memory.

If you give the --compress option, optimize will compress all the patches
in the repository. Similarly, if you give the --uncompress, optimize will de-
compress all the patches in the repository. --dont-compress means “don’t
compress, but don’t uncompress either”. It would be useful if one of the com-
pression options was provided as a default and you wanted to override it.

--modernize-patches

If you provide the --modernize-patches argument, darcs will convert obso-
lete patches into the current darcs format. This affects both the patch contents
and the patch formatting.

Older versions of darcs formatted the long comments slightly differently,
which can cause trouble with third-party tools that wish to parse the darcs
patches, although darcs itself still reads the older patches fine. --modernize-patches
standardizes the formatting of all patches.

In addition, very old versions of darcs created the “merger 0.9” patch type
when there were conflicts. This patch type inherently had bugs which could
lead to corruption, which is why it was phased out. --modernize-patches will
convert old “merger 0.9” patches into an equivalent change (which will, however,
commute differently).

--relink

The --relink and --relink-pristine options cause Darcs to relink files
from a sibling. See Section 3.6.



78 CHAPTER 6. DARCS COMMANDS

--reorder-patches

The --reorder-patches option causes Darcs to create an optimal order-
ing of its internal patch inventory. This may help to produce shorter ‘context’
lists when sending patches, and may improve performance for some other op-
erations as well. You should not run --reorder-patches on a repository from
which someone may be simultaneously pulling or getting, as this could lead to
repository corruption.

6.9 Undoing, redoing and running in circles

6.9.1 darcs amend-record

Usage: darcs amend-record [OPTION]... [FILE or DIRECTORY]...
Options:

--match PATTERN select patch matching PATTERN
-p --patch REGEXP select patch matching REGEXP
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--no-test don’t run the test script
--test run the test script
--leave-test-directory don’t remove the test directory
--remove-test-directory remove the test directory
--compress create compressed patches
--dont-compress don’t create compressed patches

-a --all answer yes to all patches
--interactive prompt user interactively
--ignore-times don’t trust the file modification times

-l --look-for-adds
In addition to modifications, look for files
that are not boring, and thus are potentially
pending addition

--dont-look-for-adds
Don’t look for any files or directories that
could be added, and don’t add them
automatically

--repodir DIRECTORY specify the repository directory in which to
run

Amend-record is used to replace a patch with a newer version with additional
changes.

WARNINGS: You should ONLY use amend-record on patches which only
exist in a single repository! Also, running amend-record while another user is
pulling from the same repository may cause repository corruption.

If you provide one or more files or directories as additional arguments to
amend-record, you will only be prompted to changes in those files or directories.

The old version of the patch is lost and the new patch will include both
the old and the new changes. This is mostly the same as unrecording the old



6.9. UNDOING, REDOING AND RUNNING IN CIRCLES 79

patch, fixing the changes and recording a new patch with the same name and
description.

amend-record will modify the date of the recorded patch.
If you configure darcs to run a test suite, darcs will run this test on the

amended repository to make sure it is valid. Darcs first creates a pristine copy
of the source tree (in a temporary directory), then it runs the test, using its
return value to decide if the amended change is valid.

6.9.2 darcs rollback

Usage: darcs rollback [OPTION]...
Options:

--match PATTERN select patch matching PATTERN
-p --patch REGEXP select patch matching REGEXP

--compress create compressed patches
--dont-compress don’t create compressed patches

-v --verbose give verbose output
--standard-verbosity don’t give verbose output

--repodir DIRECTORY specify the repository directory in which to
run

Rollback is used to undo the effects of a single patch without actually deleting
that patch. Instead, it applies the inverse patch as a new patch. Unlike unpull
and unrecord (which accomplish a similar goal) rollback is perfectly safe, since
it leaves in the repository a record of the patch it is removing. If you decide
you didn’t want to roll back a patch after all, you probably should use unrecord
to undo the rollback, since like rollback, unrecord doesn’t affect the working
directory.

6.9.3 darcs unrecord

Usage: darcs unrecord [OPTION]...
Options:

--from-match PATTERN
select changes starting with a patch
matching PATTERN

--from-patch REGEXP
select changes starting with a patch
matching REGEXP

--from-tag REGEXP select changes starting with a tag matching
REGEXP

--last NUMBER select the last NUMBER patches
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--compress create compressed patches
--dont-compress don’t create compressed patches

--repodir DIRECTORY specify the repository directory in which to
run



80 CHAPTER 6. DARCS COMMANDS

Unrecord does the opposite of record in that it makes the changes from
patches active changes again which you may record or revert later. The working
copy itself will not change.

Unrecord can be thought of as undo-record. If a record is followed by an
unrecord, everything looks like before the record; all the previously unrecorded
changes are back, and can be recorded again in a new patch. The unrecorded
patch however is actually removed from your repository, so there is no way to
record it again to get it back.5.

If you want to remove the changes from the working copy too (where they
otherwise will show up as unrecorded changes again), you’ll also need to darcs revert.
To do unrecord and revert in one go, you can use darcs unpull.

If you don’t revert after unrecording, then the changes made by the un-
recorded patches are left in your working tree. If these patches are actually
from another repository, interaction (either pushes or pulls) with that reposi-
tory may be massively slowed down, as darcs tries to cope with the fact that
you appear to have made a large number of changes that conflict with those
present in the other repository. So if you really want to undo the result of a
pull operation, use unpull! Unrecord is primarily intended for when you record
a patch, realize it needs just one more change, but would rather not have a
separate patch for just that one change.

WARNING: Unrecord should not be run when there is a possibility that
another user may be pulling from the same repository. Attempting to do so
may cause repository corruption.

--from-match, --from-patch, --from-tag, --last

Usually you only want to unrecord the latest changes, and almost never
would you want to unrecord changes before a tag—you would have to have
unrecorded the tag as well to do that. Therefore, and for efficiency, darcs only
prompts you for the latest patches, after some optimal tag.

If you do want to unrecord more patches in one go, there are the --from
and --last options to set the earliest patch selectable to unrecord.

--matches, --patches, --tags

With these options you can specify what patch or patches to be prompted for
by unrecord. This is especially useful when you want to unrecord patches with
dependencies, since all the dependent patches (but no others) will be included
in the choices.

These options can be slow if the list of patches to match is long, which can
happen if --from or --last is used. The latter options can of course be used
to shorten the list too, if it is long by default.

5The patch file itself is not actually deleted, but its context is lost, so it cannot be reliably
read—your only choice would be to go in by hand and read its contents.



6.9. UNDOING, REDOING AND RUNNING IN CIRCLES 81

6.9.4 darcs unpull

Usage: darcs unpull [OPTION]...
Options:

--from-match PATTERN
select changes starting with a patch
matching PATTERN

--from-patch REGEXP
select changes starting with a patch
matching REGEXP

--from-tag REGEXP select changes starting with a tag matching
REGEXP

--last NUMBER select the last NUMBER patches
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--compress create compressed patches
--dont-compress don’t create compressed patches
--ignore-times don’t trust the file modification times
--repodir DIRECTORY specify the repository directory in which to

run
Unpull completely removes recorded patches from your local repository. The

changes will be undone in your working copy and the patches will not be shown
in your changes list anymore. Beware that if the patches are not still present in
another repository you will lose precious code by unpulling!

Unlike unrecord, unpull does not just delete the patch from the repository, it
actually applies an inverse patch to the repository. This makes unpull a partic-
ularly dangerous command, as it not only deletes the patch from the repository,
but also removes the changes from the working directory. It is equivalent to an
unrecord followed by a revert, except that revert can be unreverted.

WARNING: Unpull should not be run when there is a possibility that
another user may be pulling from the same repository. Attempting to do so
may cause repository corruption.

Contrary to what its name suggests, there is nothing in unpull that requires
that the “unpulled” patch originate from a different repository. The name was
chosen simply to suggest a situation in which it is “safe” to use unpull. If the
patch was originally from another repository, then unpulling is safe, because you
can always pull the patch again if you decide you want it after all. If you unpull
a locally recorded patch, all record of that change is lost, which is what makes
this a “dangerous” command, and thus deserving of an obscure name which is
more suggestive of when it is safe to use than precisely what it does.

--from-match, --from-patch, --from-tag, --last

For efficiency, darcs only prompts you for the latest patches, after some
optimal tag. If you do want to unpull more patches in one go, there are the
--from and --last options to set the earliest patch selectable to unpull.



82 CHAPTER 6. DARCS COMMANDS

--matches, --patches, --tags

With these options you can specify what patch or patches to be prompted
for by unpull. This is especially useful when you want to unpull patches with
dependencies, since all the dependent patches (but no others) will be included
in the choices.

In the case of tags, what you are unpulling is the tag itself, not any other
patches.

These options can be slow if the list of patches to match with is long, which
can happen if --from or --last is used. The latter options can of course be
used to shorten the list too, if it is long by default.

6.9.5 darcs obliterate

Usage: darcs obliterate [OPTION]...
Options:

--from-match PATTERN
select changes starting with a patch
matching PATTERN

--from-patch REGEXP
select changes starting with a patch
matching REGEXP

--from-tag REGEXP select changes starting with a tag matching
REGEXP

--last NUMBER select the last NUMBER patches
--matches PATTERN select patches matching PATTERN

-p --patches REGEXP select patches matching REGEXP
-t --tags REGEXP select tags matching REGEXP
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--compress create compressed patches
--dont-compress don’t create compressed patches
--ignore-times don’t trust the file modification times
--repodir DIRECTORY specify the repository directory in which to

run
Obliterate completely removes recorded patches from your local repository.

The changes will be undone in your working copy and the patches will not be
shown in your changes list anymore. Beware that you can lose precious code by
obliterating!

Obliterate deletes a patch from the repository and removes those changes
from the working directory. It is therefore a very dangerous command. When
there are no local changes, obliterate is equivalent to an unrecord followed by
a revert, except that revert can be unreverted. In the case of tags, obliterate
removes the tag itself, not any other patches.

Note that obliterate is currently an alias for unpull.
WARNING: Obliterate should not be run when there is a possibility that

another user may be pulling from the same repository. Attempting to do so
may cause repository corruption.



6.9. UNDOING, REDOING AND RUNNING IN CIRCLES 83

--from-match, --from-patch, --from-tag, --last

For efficiency, darcs only prompts you for the latest patches, after some
optimal tag. If you do want to unpull more patches in one go, there are the
--from and --last options to set the earliest patch selectable to unpull.

--matches, --patches, --tags

With these options you can specify what patch or patches to be prompted
for by unpull. This is especially useful when you want to unpull patches with
dependencies, since all the dependent patches (but no others) will be included
in the choices.

6.9.6 darcs revert

Usage: darcs revert [OPTION]... [FILE or DIRECTORY]...
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--ignore-times don’t trust the file modification times

-a --all answer yes to all patches
--interactive prompt user interactively

--repodir DIRECTORY specify the repository directory in which to
run

Revert is used to undo changes made to the working copy which have not
yet been recorded. You will be prompted for which changes you wish to undo.
The last revert can be undone safely using the unrevert command if the working
copy was not modified in the meantime. The actions of a revert may be reversed
using the unrevert command (see subsection 6.9.7). However, if you’ve made
changes since the revert your mileage may vary, so please be careful.

You can give revert optional arguments indicating files or directories. If you
do so it will only prompt you to revert changes in those files or in files in those
directories.

6.9.7 darcs unrevert

Usage: darcs unrevert [OPTION]...
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--ignore-times don’t trust the file modification times

-a --all answer yes to all patches
--interactive prompt user interactively

--repodir DIRECTORY specify the repository directory in which to
run



84 CHAPTER 6. DARCS COMMANDS

Unrevert is used to undo the results of a revert command. It is only guar-
anteed to work properly if you haven’t made any changes since the revert was
performed.

The command makes a best effort to merge the unreversion with any changes
you have since made. In fact, unrevert should even work if you’ve recorded
changes since reverting.

6.10 Advanced examination of the repository

6.10.1 darcs diff

Usage: darcs diff [OPTION]... [FILE or DIRECTORY]...
Options:

--to-match PATTERN select changes up to a patch matching
PATTERN

--to-patch REGEXP select changes up to a patch matching
REGEXP

--to-tag REGEXP select changes up to a tag matching
REGEXP

--from-match PATTERN
select changes starting with a patch
matching PATTERN

--from-patch REGEXP
select changes starting with a patch
matching REGEXP

--from-tag REGEXP select changes starting with a tag matching
REGEXP

--match PATTERN select a single patch matching PATTERN
-p --patch REGEXP select a single patch matching REGEXP

--last NUMBER select the last NUMBER patches
--diff-opts OPTIONS options to pass to diff

-u --unified pass -u option to diff

--repodir DIRECTORY specify the repository directory in which to
run

Diff can be used to create a diff between two versions which are in your
repository. Specifying just –from-patch will get you a diff against your working
copy. If you give diff no version arguments, it gives you the same information as
whatsnew except that the patch is formatted as the output of a diff command

--diff-opts

Diff calls an external “diff” command to do the actual work, and passes any
unrecognized flags to this diff command. Thus you can call

% darcs diff -t 0.9.8 -t 0.9.10 -- -u

to get a diff in the unified format. Actually, thanks to the wonders of getopt you
need the “--” shown above before any arguments to diff. You can also specify
additional arguments to diff using the --diff-opts flag. The above command
would look like this:



6.10. ADVANCED EXAMINATION OF THE REPOSITORY 85

% darcs diff --diff-opts -u -t 0.9.8 -t 0.9.10

This may not seem like an improvement, but it really pays off when you want
to always give diff the same options. You can do this by adding

% diff diff-opts -udp

to your _darcs/prefs/defaults file.
If you want to view only the differences to one or more files, you can do so

with a command such as

% darcs diff foo.c bar.c baz/

FIXME: I should allow the user to specify the external diff command. Cur-
rently it is hardwired to “diff”.

6.10.2 darcs annotate

Usage: darcs annotate [OPTION]... [FILE or DIRECTORY]...
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
-s --summary summarize changes

--no-summary don’t summarize changes

-u --unified output patch in a darcs-specific format
similar to diff -u

--human-readable give human-readable output
--xml-output generate XML formatted output
--match PATTERN select patch matching PATTERN

-p --patch REGEXP select patch matching REGEXP
-t --tag REGEXP select tag matching REGEXP

--creator-hash HASH specify hash of creator patch (see docs)

--repodir DIRECTORY specify the repository directory in which to
run

Display which patch last modified something. Annotate displays which
patches created or last modified a directory file or line. It can also display
the contents of a particular patch in darcs format.

--human-readable, --summary, --unified, --xml--output

When called with just a patch name, annotate outputs the patch in darcs
format, which is the same as --human-readable.

--xml-output is the alternative to --human-readable.
--summary can be used with either the --xml-output or the --human-readable

options to alter the results. It is documented fully in the ‘common options’ por-
tion of the manual.

Giving the --unified flag implies --human-readable, and causes the out-
put to remain in a darcs-specific format that is similar to that produced by
diff --unified.



86 CHAPTER 6. DARCS COMMANDS

If a directory name is given, annotate will output details of the last modifying
patch for each file in the directory and the directory itself. The details look like
this:

# Created by [bounce handling patch
# mark**20040526202216] as ./test/m7/bounce_handling.pl

bounce_handling.pl

If a patch name and a directory are given, these details are output for the
time after that patch was applied. If a directory and a tag name are given, the
details of the patches involved in the specified tagged version will be output.

If a file name is given, the last modifying patch details of that file will be
output, along with markup indicating patch details when each line was last (and
perhaps next) modified.

--creator-hash HASH

The --creator-hash option should only be used in combination with a file
or directory to be annotated. In this case, the name of that file or directory is
interpreted to be its name at the time it was created, and the hash given along
with --creator-hash indicates the patch that created the file or directory.
This allows you to (relatively) easily examine a file even if it has been renamed
multiple times.

6.11 Rarely needed and obscure commands

6.11.1 darcs resolve

Usage: darcs resolve [OPTION]...
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
--ignore-times don’t trust the file modification times
--repodir DIRECTORY specify the repository directory in which to

run
Resolve is used to mark and resolve any conflicts that may exist in a repos-

itory. Note that this trashes any unrecorded changes in the working copy.

6.11.2 darcs dist

Usage: darcs dist [OPTION]...
Options:
-d --dist-name DISTNAME name of version
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
Create a distribution tarball.



6.11. RARELY NEEDED AND OBSCURE COMMANDS 87

Dist is a handy tool for implementing a ”make dist” target in your makefile.
It creates a tarball of the recorded edition of your tree. Basically, you will
typically use it in a makefile rule such as

dist:
darcs dist --dist-name darcs-‘./darcs --version‘

darcs dist then simply creates a clean copy of the source tree, which it then
tars and gzips. If you use programs such as autoconf or automake, you really
should run them on the clean tree before tarring it up and distributing it. You
can do this using the pref value “predist”, which is a shell command that is run
prior to tarring up the distribution:

% darcs setpref predist "autoconf && automake"

6.11.3 darcs trackdown

Usage: darcs trackdown [OPTION]... [[INITIALIZATION] COMMAND]
Options:
-v --verbose give verbose output

--standard-verbosity don’t give verbose output
Trackdown tries to find the most recent version in the repository which

passes a test. Given no arguments, it uses the default repository test. Given
one argument, it treats it as a test command. Given two arguments, the first
is an initialization command with is run only once, and the second is the test
command.

Trackdown is helpful for locating when something was broken. It creates a
temporary directory with the latest repository content in it and cd to it. First,
and only once, it runs the initialization command if any, for example

’autoconf; ./configure >/dev/null’

Then it runs the test command, for example

’make && cd tests && sh /tmp/test.sh’

While the test command exits with an error return code, darcs “unapplies” one
patch from the version controlled files to retrieve an earlier version, and repeats
the test command. If the test command finally succeeds, the name of the hunted
down patch is found in the output before the last test run.

FIXME: It is still rather primitive. Currently it just goes back over the
history in reverse order trying each version. I’d like for it to explore different
patch combinations, to try to find the minimum number of patches that you
would need to unpull in order to make the test succeed.

FIXME: I also would like to add an interface by which you can tell it which
patches it should consider not including. Without such a feature, the following
command:

% darcs trackdown ’make && false’

would result in compiling every version in the repository–which is a rather te-
dious prospect.



88 CHAPTER 6. DARCS COMMANDS

Example usage

If you want to find the last version of darcs that had a FIXME note in the file
Record.lhs, you could run

% darcs trackdown ’grep FIXME Record.lhs’

To find the latest version that compiles, you can run

% darcs trackdown ’autoconf’ ’./configure && make’

Trackdown can also be used to see how other features of the code changed
with time. For example

% darcs trackdown ’autoconf; ./configure’ \
"make darcs > /dev/null && cd ~/darcs && time darcs check && false"

would let you see how long ‘darcs check’ takes to run on each previous version
of darcs that will actually compile. The “&& false” ensures that trackdown
keeps going.

6.11.4 darcs repair

Usage: darcs repair [OPTION]...
Options:
-v --verbose give verbose output
-q --quiet suppress informational output

--standard-verbosity neither verbose nor quiet output
Repair attempts to fix corruption that may have entered your repository.
Repair currently will only repair damage to the pristine tree. Fortunately

this is just the sort of corruption that is most likely to happen.



Appendix A

Theory of patches

A.1 Background

I think a little background on the author is in order. I am a physicist, and
think like a physicist. The proofs and theorems given here are what I would call
“physicist” proofs and theorems, which is to say that while the proofs may not
be rigorous, they are practical, and the theorems are intended to give physical
insight. It would be great to have a mathematician work on this, but I am not
a mathematician, and don’t care for math.

From the beginning of this theory, which originated as the result of a series
of email discussions with Tom Lord, I have looked at patches as being analogous
to the operators of quantum mechanics. I include in this appendix footnotes
explaining the theory of patches in terms of the theory of quantum mechanics.
I know that for most people this won’t help at all, but many of my friends (and
as I write this all three of darcs’ users) are physicists, and this will be helpful to
them. To non-physicists, perhaps it will provide some insight into how at least
this physicist thinks.

A.2 Introduction

A patch describes a change to the tree. It could be either a primitive patch
(such as a file add/remove, a directory rename, or a hunk replacement within
a file), or a composite patch describing many such changes. Every patch type
must satisfy the conditions described in this appendix. The theory of patches is
independent of the data which the patches manipulate, which is what makes it
both powerful and useful, as it provides a framework upon which one can build
a revision control system in a sane manner.

Although in a sense, the defining property of any patch is that it can be
applied to a certain tree, and thus make a certain change, this change does not
wholly define the patch. A patch is defined by a representation, together with
a set of rules for how it behaves (which it has in common with its patch type).

89



90 APPENDIX A. THEORY OF PATCHES

The representation of a patch defines what change that particular patch makes,
and must be defined in the context of a specific tree. The theory of patches
is a theory of the many ways one can change the representation of a patch
to place it in the context of a different tree. The patch itself is not changed,
since it describes a single change, which must be the same regardless of its
representation1.

So how does one define a tree, or the context of a patch? The simplest way
to define a tree is as the result of a series of patches applied to the empty tree2.
Thus, the context of a patch consists of the set of patches that precede it.

A.3 Applying patches

A.3.1 Hunk patches

Hunks are an example of a complex filepatch. A hunk is a set of lines of a text
file to be replaced by a different set of lines. Either of these sets may be empty,
which would mean a deletion or insertion of lines.

A.3.2 Token replace patches

Although most filepatches will be hunks, darcs is clever enough to support other
types of changes as well. A “token replace” patch replaces all instances of a given
token with some other version. A token, here, is defined by a regular expres-
sion, which must be of the simple [a–z. . . ] type, indicating which characters are
allowed in a token, with all other characters acting as delimiters. For example,
a C identifier would be a token with the flag [A-Za-z_0-9].

What makes the token replace patch special is the fact that a token replace
can be merged with almost any ordinary hunk, giving exactly what you would
want. For example, you might want to change the patch type TokReplace to
TokenReplace (if you decided that saving two characters of space was stupid).
If you did this using hunks, it would modify every line where TokReplace oc-
curred, and quite likely provoke a conflict with another patch modifying those
lines. On the other hand, if you did this using a token replace patch, the only
change that it could conflict with would be if someone else had used the to-
ken “TokenReplace” in their patch rather than TokReplace—and that actually
would be a real conflict!

1For those comfortable with quantum mechanics, think of a patch as a quantum mechani-
cal operator, and the representation as the basis set. The analogy breaks down pretty quickly,
however, since an operator could be described in any complete basis set, while a patch mod-
ifying the file foo can only be described in the rather small set of contexts which have a file
foo to be modified.

2This is very similar to the second-quantized picture, in which any state is seen as the
result of a number of creation operators acting on the vacuum, and provides a similar set
of simplifications—in particular, the exclusion principle is very elegantly enforced by the
properties of the anti-hermitian fermion creation operators.



A.4. PATCH RELATIONSHIPS 91

A.4 Patch relationships

The simplest relationship between two patches is that of “sequential” patches,
which means that the context of the second patch (the one on the left) consists of
the first patch (on the right) plus the context of the first patch. The composition
of two patches (which is also a patch) refers to the patch which is formed by
first applying one and then the other. The composition of two patches, P1 and
P2 is represented as P2P1, where P1 is to be applied first, then P2

3

There is one other very useful relationship that two patches can have, which
is to be parallel patches, which means that the two patches have an identical
context (i.e. their representation applies to identical trees). This is represented
by P1 ‖ P2. Of course, two patches may also have no simple relationship to one
another. In that case, if you want to do something with them, you’ll have to
manipulate them with respect to other patches until they are either in sequence
or in parallel.

The most fundamental and simple property of patches is that they must be
invertible. The inverse of a patch is described by: P−1. In the darcs implemen-
tation, the inverse is required to be computable from knowledge of the patch
only, without knowledge of its context, but that (although convenient) is not
required by the theory of patches.

Definition 1 The inverse of patch P is P−1, which is the “simplest” patch for
which the composition P−1P makes no changes to the tree.

Using this definition, it is trivial to prove the following theorem relating to the
inverse of a composition of two patches.

Theorem 1 The inverse of the composition of two patches is

(P2P1)−1 = P−1
1 P−1

2 .

Moreover, it is possible to show that the right inverse of a patch is equal to its left
inverse. In this respect, patches continue to be analogous to square matrices,
and indeed the proofs relating to these properties of the inverse are entirely
analogous to the proofs in the case of matrix multiplication. The compositions
proofs can also readily be extended to the composition of more than two patches.

A.5 Commuting patches

A.5.1 Composite patches

Composite patches are made up of a series of patches intended to be applied
sequentially. They are represented by a list of patches, with the first patch in
the list being applied first.

3This notation is inspired by the notation of matrix multiplication or the application of
operators upon a Hilbert space. In the algebra of patches, there is multiplication (i.e. compo-
sition), which is associative but not commutative, but no addition or subtraction.



92 APPENDIX A. THEORY OF PATCHES

The first way (of only two) to change the context of a patch is by commu-
tation, which is the process of changing the order of two sequential patches.

Definition 2 The commutation of patches P1 and P2 is represented by

P2P1 ←→ P1
′P2

′.

Here P ′
1 is intended to describe the same change as P1, with the only difference

being that P ′
1 is applied after P ′

2 rather than before P2.

The above definition is obviously rather vague, the reason being that what is the
“same change” has not been defined, and we simply assume (and hope) that the
code’s view of what is the “same change” will match those of its human users.
The ‘←→’ operator should be read as something like the == operator in C,
indicating that the right hand side performs identical changes to the left hand
side, but the two patches are in reversed order. When read in this manner, it
is clear that commutation must be a reversible process, and indeed this means
that commutation can fail, and must fail in certain cases. For example, the
creation and deletion of the same file cannot be commuted. When two patches
fail to commute, it is said that the second patch depends on the first, meaning
that it must have the first patch in its context (remembering that the context
of a patch is a set of patches, which is how we represent a tree). 4

Merge The second way one can change the context of a patch is by a merge
operation. A merge is an operation that takes two parallel patches and gives
a pair of sequential patches. The merge operation is represented by the arrow
“=⇒”.

Definition 3 The result of a merge of two patches, P1 and P2 is one of two
patches, P ′

1 and P ′
2, which satisfy the relationship:

P2 ‖ P1 =⇒ P2
′P1 ←→ P1

′P2.

Note that the sequential patches resulting from a merge are required to commute.
This is an important consideration, as without it most of the manipulations we
would like to perform would not be possible. The other important fact is that
a merge cannot fail. Naively, those two requirements seem contradictory. In
reality, what it means is that the result of a merge may be a patch which is
much more complex than any we have yet considered5.

4The fact that commutation can fail makes a huge difference in the whole patch formalism.
It may be possible to create a formalism in which commutation always succeeds, with the result
of what would otherwise be a commutation that fails being something like a virtual particle
(which can violate conservation of energy), and it may be that such a formalism would allow
strict mathematical proofs (whereas those used in the current formalism are mostly only hand
waving “physicist” proofs). However, I’m not sure how you’d deal with a request to delete a
file that has not yet been created, for example. Obviously you’d need to create some kind of
antifile, which would annihilate with the file when that file finally got created, but I’m not
entirely sure how I’d go about doing this. _̈ So I’m sticking with my hand waving formalism.

5Alas, I don’t know how to prove that the two constraints even can be satisfied. The best
I have been able to do is to believe that they can be satisfied, and to be unable to find an case
in which my implementation fails to satisfy them. These two requirements are the foundation
of the entire theory of patches (have you been counting how many foundations it has?).



A.5. COMMUTING PATCHES 93

A.5.2 How merges are actually performed

The constraint that any two compatible patches (patches which can successfully
be applied to the same tree) can be merged is actually quite difficult to apply.
The above merge constraints also imply that the result of a series of merges must
be independent of the order of the merges. So I’m putting a whole section here
for the interested to see what algorithms I use to actually perform the merges
(as this is pretty close to being the most difficult part of the code).

The first case is that in which the two merges don’t actually conflict, but
don’t trivially merge either (e.g. hunk patches on the same file, where the line
number has to be shifted as they are merged). This kind of merge can actually
be very elegantly dealt with using only commutation and inversion.

There is a handy little theorem which is immensely useful when trying to
merge two patches.

Theorem 2 P ′
2P1 ←→ P ′

1P2 if and only if P ′−1
1 P ′

2 ←→ P2P
−1
1 , provided both

commutations succeed. If either commute fails, this theorem does not apply.

This can easily be proven by multiplying both sides of the first commutation
by P ′−1

1 on the left, and by P−1
1 on the right. Besides being used in merging,

this theorem is also useful in the recursive commutations of mergers. From
Theorem 2, we see that the merge of P1 and P ′

2 is simply the commutation of
P2 with P−1

1 (making sure to do the commutation the right way). Of course,
if this commutation fails, the patches conflict. Moreover, one must check that
the merged result actually commutes with P1, as the theorem applies only when
both commutations are successful.

Of course, there are patches that actually conflict, meaning a merge where
the two patches truly cannot both be applied (e.g. trying to create a file and
a directory with the same name). We deal with this case by creating a special
kind of patch to support the merge, which we will call a “merger”. Basically, a
merger is a patch that contains the two patches that conflicted, and instructs
darcs basically to resolve the conflict. By construction a merger will satisfy the
commutation property (see Definition 3) that characterizes all merges. Moreover
the merger’s properties are what makes the order of merges unimportant (which
is a rather critical property for darcs as a whole).

The job of a merger is basically to undo the two conflicting patches, and
then apply some sort of a “resolution” of the two instead. In the case of two
conflicting hunks, this will look much like what CVS does, where it inserts both
versions into the file. In general, of course, the two conflicting patches may
both be mergers themselves, in which case the situation is considerably more
complicated.

Much of the merger code depends on a routine which recreates from a single
merger the entire sequence of patches which led up to that merger (this is, of
course, assuming that this is the complicated general case of a merger of mergers
of mergers). This “unwind” procedure is rather complicated, but absolutely
critical to the merger code, as without it we wouldn’t even be able to undo



94 APPENDIX A. THEORY OF PATCHES

the effects of the patches involved in the merger, since we wouldn’t know what
patches were all involved in it.

Basically, unwind takes a merger such as

M( M(A,B), M(A,M(C,D)))

From which it recreates a merge history:

C
A
M(A,B)
M( M(A,B), M(A,M(C,D)))

(For the curious, yes I can easily unwind this merger in my head [and on paper
can unwind insanely more complex mergers]—that’s what comes of working for
a few months on an algorithm.) Let’s start with a simple unwinding. The
merger M(A,B) simply means that two patches (A and B) conflicted, and of the
two of them A is first in the history. The last two patches in the unwinding of
any merger are always just this easy. So this unwinds to:

A
M(A,B)

What about a merger of mergers? How about M(A,M(C,D)). In this case we
know the two most recent patches are:

A
M(A,M(C,D))

But obviously the unwinding isn’t complete, since we don’t yet see where C and
D came from. In this case we take the unwinding of M(C,D) and drop its latest
patch (which is M(C,D) itself) and place that at the beginning of our patch train:

C
A
M(A,M(C,D))

As we look at M( M(A,B), M(A,M(C,D))), we consider the unwindings of each
of its subpatches:

C
A A
M(A,B) M(A,M(C,D))

As we did with M(A,M(C,D)), we’ll drop the first patch on the right and insert
the first patch on the left. That moves us up to the two A’s. Since these agree,
we can use just one of them (they “should” agree). That leaves us with the C
which goes first.

The catch is that things don’t always turn out this easily. There is no
guarantee that the two A’s would come out at the same time, and if they didn’t,



A.5. COMMUTING PATCHES 95

we’d have to rearrange things until they did. Or if there was no way to rearrange
things so that they would agree, we have to go on to plan B, which I will explain
now.

Consider the case of M( M(A,B), M(C,D)). We can easily unwind the two
subpatches

A C
M(A,B) M(C,D)

Now we need to reconcile the A and C. How do we do this? Well, as usual, the
solution is to use the most wonderful Theorem 2. In this case we have to use
it in the reverse of how we used it when merging, since we know that A and C
could either one be the last patch applied before M(A,B) or M(C,D). So we can
find C’ using

A−1C ←→ C ′A′−1

Giving an unwinding of

C’
A
M(A,B)
M( M(A,B), M(C,D) )

There is a bit more complexity to the unwinding process (mostly having to do
with cases where you have deeper nesting), but I think the general principles
that are followed are pretty much included in the above discussion.

It can sometimes be handy to have a canonical representation of a given
patch. We achieve this by defining a canonical form for each patch type, and a
function “canonize” which takes a patch and puts it into canonical form. This
routine is used by the diff function to create an optimal patch (based on an
LCS algorithm) from a simple hunk describing the old and new version of a file.
Note that canonization may fail, if the patch is internally inconsistent.

A simpler, faster (and more generally useful) cousin of canonize is the co-
alescing function. This takes two sequential patches, and tries to turn them
into one patch. This function is used to deal with “split” patches, which are
created when the commutation of a primitive patch can only be represented by
a composite patch. In this case the resulting composite patch must return to
the original primitive patch when the commutation is reversed, which a split
patch accomplishes by trying to coalesce its contents each time it is commuted.

A.5.3 File patches

A file patch is a patch which only modifies a single file. There are some rules
which can be made about file patches in general, which makes them a handy
class. For example, commutation of two filepatches is trivial if they modify
different files. There is an exception when one of the files has a name ending
with “-conflict”, in which case it may not commute with a file having the same



96 APPENDIX A. THEORY OF PATCHES

name, but without the “-conflict.” If they happen to modify the same file, we’ll
have to check whether or not they commute.

There is another handy function, which primarily affects file patches (al-
though it can also affect other patches, such as rename patches or dir add/remove
patches), which is the submerge-in-directory function. This function changes
the patch to act on a patch within a subdirectory rather than in the current
directory, and is useful when performing the recursive diff.

A.5.4 Hunks

The hunk is the simplest patch that has a commuting pattern in which the com-
muted patches differ from the originals (rather than simple success or failure).
This makes commuting or merging two hunks a tad tedious. Hunks, of course,
can be coalesced if they have any overlap. Note that coalesce code doesn’t check
if the two patches are conflicting. If you are coalescing two conflicting hunks,
you’ve already got a bug somewhere.

One of the most important pieces of code is the canonization of a hunk,
which is where the “diff” algorithm is performed. This algorithm begins with
chopping off the identical beginnings and endings of the old and new hunks.
This isn’t strictly necessary, but is a good idea, since this process is O(n), while
the primary diff algorithm is something considerably more painful than that. . .
actually the head would be dealt with all right, but with more space complexity.
I think it’s more efficient to just chop the head and tail off first.

A.6 Conflicts

There are a couple of simple constraints on the routine which determines how
to resolve two conflicting patches (which is called ‘glump’). These must be
satisfied in order that the result of a series of merges is always independent
of their order. Firstly, the output of glump cannot change when the order of
the two conflicting patches is switched. If it did, then commuting the merger
could change the resulting patch, which would be bad. Secondly, the result of
the merge of three (or more) conflicting patches cannot depend on the order in
which the merges are performed.

The conflict resolution code (glump) begins by “unravelling” the merger
into a set of sequences of patches. Each sequence of patches corresponds to
one non-conflicted patch that got merged together with the others. The result
of the unravelling of a series of merges must obviously be independent of the
order in which those merges are performed. This unravelling code (which uses
the unwind code mentioned above) uses probably the second most complicated
algorithm. Fortunately, if we can successfully unravel the merger, almost any
function of the unravelled merger satisfies the two constraints mentioned above
that the conflict resolution code must satisfy.



A.7. PATCH STRING FORMATTING 97

A.7 Patch string formatting

Of course, in order to store our patches in a file, we’ll have to save them as
some sort of strings. The convention is that each patch string will end with a
newline, but on parsing we skip any amount of whitespace between patches.

Composite patch A patch made up of a few other patches.

{
<put patches here> (indented two)

}

Split patch A split patch is similar to a composite patch (identical in how it’s
stored), but rather than being composed of several patches grouped together, it
is created from one patch that has been split apart, typically through a merge
or commutation.

(
<put patches here> (indented two)

)

Hunk Replace a hunk (set of contiguous lines) of text with a new hunk.

hunk FILE LINE#
-LINE
...
+LINE
...

Token replace Replace a token with a new token. Note that this format
means that the white space must not be allowed within a token. If you know
of a practical application of whitespace within a token, let me know and I may
change this.

replace FILENAME [REGEX] OLD NEW

Binary file modification Modify a binary file

binary FILENAME
oldhex
*HEXHEXHEX
...
newhex
*HEXHEXHEX
...



98 APPENDIX A. THEORY OF PATCHES

Add file Add an empty file to the tree.
addfile filename

Remove file Delete a file from the tree.
rmfile filename

Move Rename a file or directory.
move oldname newname

Change Pref Change one of the preference settings. Darcs stores a number
of simple string settings. Among these are the name of the test script and the
name of the script that must be called prior to packing in a make dist.

changepref prefname
oldval
newval

Add dir Add an empty directory to the tree.
adddir filename

Remove dir Delete a directory from the tree.
rmdir filename

Merger patches Merge two patches. The MERGERVERSION is included
to allow some degree of backwards compatibility if the merger algorithm needs
to be changed.

merger MERGERVERSION
<first patch>
<second patch>

Conflictor patches The conflictor patch type is the replacement for the old
merger patch type. FIXME: More explanation should be added here.

conflict
<CONFLICTING PATCH SEQUENCE>
with
<OLDER PATCH SEQUENCE>
tcilfnoc

Named patches Named patches are displayed as a “patch id” which is in
square brackets, followed by a patch. Optionally, after the patch id (but before
the patch itself) can come a list of dependencies surrounded by angle brackets.
Each dependency consists of a patch id.



Appendix B

DarcsRepo format

A repository consists of a working directory, which has within it a directory
called _darcs. There must also be subdirectories within _darcs named current
and patches. The current directory, called the pristine tree, contains the
version of the tree which has been recorded, while patches contains the actual
patches which are in the repository.

WARNING! Viewing files in current is perfectly acceptable, but if you view
them with an editor (e.g. vi or Emacs), that editor may create temporary files
in the pristine tree (_darcs/pristine/ or _darcs/current/), which will tem-
porarily cause your repository to be inconsistent. So don’t record any patches
while viewing files in darcs/current with an editor! A better plan would be to
restrict yourself to viewing these files with a pager such as more or less.

Also within _darcs is the inventory file, which lists all the patches that
are in the repository. Moreover, it also gives the order of the representation of
the patches as they are stored. Given a source of patches, i.e. any other set
of repositories which have between them all the patches contained in a given
repository, that repository can be reproduced based on only the information
in the inventory file. Under those circumstances, the order of the patches
specified in the inventory file would be unimportant, as this order is only
needed to provide context for the interpretation of the stored patches in this
repository.

There is a very special patch which may be stored in patches which is
called ‘pending’. This patch describes any changes which have not yet been
recorded, and cannot be determined by a simple diff. For example, file additions
or renames are placed in pending until they are recorded. Similarly, token
replaces are stored in pending until they are recorded.

The _darcs directory also contains a directory called “prefs”, which is
described in Chapter 4.

99



100 APPENDIX B. DARCSREPO FORMAT



Appendix C

The GNU General Public
License

Version 2, June 1991

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your free-
dom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Founda-
tion’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

101



102 APPENDIX C. THE GNU GENERAL PUBLIC LICENSE

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect
on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program
will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and mod-
ification follow.

GNU General Public License

Terms and Conditions For Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent



103

of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the



104 APPENDIX C. THE GNU GENERAL PUBLIC LICENSE

right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have



105

received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distribut-
ing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright



106 APPENDIX C. THE GNU GENERAL PUBLIC LICENSE

holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no
warranty for the program, to the extent permitted by ap-
plicable law. Except when otherwise stated in writing the
copyright holders and/or other parties provide the program
“as is” without warranty of any kind, either expressed or im-
plied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program
is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to
in writing will any copyright holder, or any other party
who may modify and/or redistribute the program as permitted
above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of
the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or



C.1. APPENDIX: HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS107

losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such
holder or other party has been advised of the possibility of
such damages.

End of Terms and Conditions

C.1 Appendix: How to Apply These Terms to
Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it
does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foun-
dation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) <year> <name of author>
Gnomovision comes with ABSOLUTELY NO WARRANTY; for de-
tails type ‘show w’.
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.



108 APPENDIX C. THE GNU GENERAL PUBLIC LICENSE

The hypothetical commands show w and show c should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than show w and show c; they could even be
mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-
gram
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the li-
brary. If this is what you want to do, use the GNU Library General Public
License instead of this License.


