/* File produced by Kranc */ #define KRANC_C #include #include #include #include #include #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "GenericFD.h" #include "Differencing.h" #include "cctk_Loop.h" #include "loopcontrol.h" /* Define macros used in calculations */ #define INITVALUE (42) #define INV(x) ((CCTK_REAL)1.0 / (x)) #define SQR(x) ((x) * (x)) #define CUB(x) ((x) * SQR(x)) #define QAD(x) (SQR(SQR(x))) extern "C" void eulerauto_cons_calc_rhs_3_SelectBCs(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; CCTK_INT ierr = 0; ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::Den_grouprhs","flat"); if (ierr < 0) CCTK_WARN(1, "Failed to register flat BC for EulerAuto::Den_grouprhs."); ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::En_grouprhs","flat"); if (ierr < 0) CCTK_WARN(1, "Failed to register flat BC for EulerAuto::En_grouprhs."); ierr = Boundary_SelectGroupForBC(cctkGH, CCTK_ALL_FACES, GenericFD_GetBoundaryWidth(cctkGH), -1 /* no table */, "EulerAuto::S_grouprhs","flat"); if (ierr < 0) CCTK_WARN(1, "Failed to register flat BC for EulerAuto::S_grouprhs."); return; } static void eulerauto_cons_calc_rhs_3_Body(cGH const * restrict const cctkGH, int const dir, int const face, CCTK_REAL const normal[3], CCTK_REAL const tangentA[3], CCTK_REAL const tangentB[3], int const imin[3], int const imax[3], int const n_subblock_gfs, CCTK_REAL * restrict const subblock_gfs[]) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; /* Include user-supplied include files */ /* Initialise finite differencing variables */ ptrdiff_t const di = 1; ptrdiff_t const dj = CCTK_GFINDEX3D(cctkGH,0,1,0) - CCTK_GFINDEX3D(cctkGH,0,0,0); ptrdiff_t const dk = CCTK_GFINDEX3D(cctkGH,0,0,1) - CCTK_GFINDEX3D(cctkGH,0,0,0); ptrdiff_t const cdi = sizeof(CCTK_REAL) * di; ptrdiff_t const cdj = sizeof(CCTK_REAL) * dj; ptrdiff_t const cdk = sizeof(CCTK_REAL) * dk; CCTK_REAL const dx = ToReal(CCTK_DELTA_SPACE(0)); CCTK_REAL const dy = ToReal(CCTK_DELTA_SPACE(1)); CCTK_REAL const dz = ToReal(CCTK_DELTA_SPACE(2)); CCTK_REAL const dt = ToReal(CCTK_DELTA_TIME); CCTK_REAL const t = ToReal(cctk_time); CCTK_REAL const dxi = INV(dx); CCTK_REAL const dyi = INV(dy); CCTK_REAL const dzi = INV(dz); CCTK_REAL const khalf = 0.5; CCTK_REAL const kthird = 1/3.0; CCTK_REAL const ktwothird = 2.0/3.0; CCTK_REAL const kfourthird = 4.0/3.0; CCTK_REAL const keightthird = 8.0/3.0; CCTK_REAL const hdxi = 0.5 * dxi; CCTK_REAL const hdyi = 0.5 * dyi; CCTK_REAL const hdzi = 0.5 * dzi; /* Initialize predefined quantities */ CCTK_REAL const p1o1 = 1; CCTK_REAL const p1odx = INV(dx); CCTK_REAL const p1ody = INV(dy); CCTK_REAL const p1odz = INV(dz); /* Assign local copies of arrays functions */ /* Calculate temporaries and arrays functions */ /* Copy local copies back to grid functions */ /* Loop over the grid points */ #pragma omp parallel CCTK_LOOP3(eulerauto_cons_calc_rhs_3, i,j,k, imin[0],imin[1],imin[2], imax[0],imax[1],imax[2], cctk_ash[0],cctk_ash[1],cctk_ash[2]) { ptrdiff_t const index = di*i + dj*j + dk*k; /* Assign local copies of grid functions */ CCTK_REAL DenFluxL = DenFlux[index]; CCTK_REAL DenrhsL = Denrhs[index]; CCTK_REAL EnFluxL = EnFlux[index]; CCTK_REAL EnrhsL = Enrhs[index]; CCTK_REAL S1FluxL = S1Flux[index]; CCTK_REAL S1rhsL = S1rhs[index]; CCTK_REAL S2FluxL = S2Flux[index]; CCTK_REAL S2rhsL = S2rhs[index]; CCTK_REAL S3FluxL = S3Flux[index]; CCTK_REAL S3rhsL = S3rhs[index]; /* Include user supplied include files */ /* Precompute derivatives */ CCTK_REAL const PDplus3DenFlux = PDplus3(&DenFlux[index]); CCTK_REAL const PDplus3EnFlux = PDplus3(&EnFlux[index]); CCTK_REAL const PDplus3S1Flux = PDplus3(&S1Flux[index]); CCTK_REAL const PDplus3S2Flux = PDplus3(&S2Flux[index]); CCTK_REAL const PDplus3S3Flux = PDplus3(&S3Flux[index]); /* Calculate temporaries and grid functions */ DenrhsL = DenrhsL - PDplus3DenFlux; EnrhsL = EnrhsL - PDplus3EnFlux; S1rhsL = S1rhsL - PDplus3S1Flux; S2rhsL = S2rhsL - PDplus3S2Flux; S3rhsL = S3rhsL - PDplus3S3Flux; /* Copy local copies back to grid functions */ Denrhs[index] = DenrhsL; Enrhs[index] = EnrhsL; S1rhs[index] = S1rhsL; S2rhs[index] = S2rhsL; S3rhs[index] = S3rhsL; } CCTK_ENDLOOP3(eulerauto_cons_calc_rhs_3); } extern "C" void eulerauto_cons_calc_rhs_3(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; if (verbose > 1) { CCTK_VInfo(CCTK_THORNSTRING,"Entering eulerauto_cons_calc_rhs_3_Body"); } if (cctk_iteration % eulerauto_cons_calc_rhs_3_calc_every != eulerauto_cons_calc_rhs_3_calc_offset) { return; } const char *const groups[] = { "EulerAuto::Den_flux_group", "EulerAuto::Den_grouprhs", "EulerAuto::En_flux_group", "EulerAuto::En_grouprhs", "EulerAuto::S1_flux_group", "EulerAuto::S2_flux_group", "EulerAuto::S3_flux_group", "EulerAuto::S_grouprhs"}; GenericFD_AssertGroupStorage(cctkGH, "eulerauto_cons_calc_rhs_3", 8, groups); GenericFD_EnsureStencilFits(cctkGH, "eulerauto_cons_calc_rhs_3", 1, 1, 1); GenericFD_LoopOverInterior(cctkGH, eulerauto_cons_calc_rhs_3_Body); if (verbose > 1) { CCTK_VInfo(CCTK_THORNSTRING,"Leaving eulerauto_cons_calc_rhs_3_Body"); } }