/* File produced by Kranc */ #define KRANC_C #include #include #include #include #include #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "GenericFD.h" #include "Differencing.h" #include "loopcontrol.h" #include "vectors.h" /* Define macros used in calculations */ #define INITVALUE (42) #define QAD(x) (SQR(SQR(x))) #define INV(x) (kdiv(ToReal(1.0),x)) #define SQR(x) (kmul(x,x)) #define CUB(x) (kmul(x,SQR(x))) static void ML_BSSN_convertToADMBaseFakeDtLapseShift_Body(cGH const * restrict const cctkGH, int const dir, int const face, CCTK_REAL const normal[3], CCTK_REAL const tangentA[3], CCTK_REAL const tangentB[3], int const min[3], int const max[3], int const n_subblock_gfs, CCTK_REAL * restrict const subblock_gfs[]) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; /* Declare finite differencing variables */ if (verbose > 1) { CCTK_VInfo(CCTK_THORNSTRING,"Entering ML_BSSN_convertToADMBaseFakeDtLapseShift_Body"); } if (cctk_iteration % ML_BSSN_convertToADMBaseFakeDtLapseShift_calc_every != ML_BSSN_convertToADMBaseFakeDtLapseShift_calc_offset) { return; } const char *groups[] = {"ADMBase::dtlapse","ADMBase::dtshift","grid::coordinates","Grid::coordinates","ML_BSSN::ML_dtlapse","ML_BSSN::ML_dtshift","ML_BSSN::ML_Gamma","ML_BSSN::ML_lapse","ML_BSSN::ML_shift","ML_BSSN::ML_trace_curv"}; GenericFD_AssertGroupStorage(cctkGH, "ML_BSSN_convertToADMBaseFakeDtLapseShift", 10, groups); /* Include user-supplied include files */ /* Initialise finite differencing variables */ ptrdiff_t const di = 1; ptrdiff_t const dj = CCTK_GFINDEX3D(cctkGH,0,1,0) - CCTK_GFINDEX3D(cctkGH,0,0,0); ptrdiff_t const dk = CCTK_GFINDEX3D(cctkGH,0,0,1) - CCTK_GFINDEX3D(cctkGH,0,0,0); ptrdiff_t const cdi = sizeof(CCTK_REAL) * di; ptrdiff_t const cdj = sizeof(CCTK_REAL) * dj; ptrdiff_t const cdk = sizeof(CCTK_REAL) * dk; CCTK_REAL_VEC const dx = ToReal(CCTK_DELTA_SPACE(0)); CCTK_REAL_VEC const dy = ToReal(CCTK_DELTA_SPACE(1)); CCTK_REAL_VEC const dz = ToReal(CCTK_DELTA_SPACE(2)); CCTK_REAL_VEC const dt = ToReal(CCTK_DELTA_TIME); CCTK_REAL_VEC const dxi = INV(dx); CCTK_REAL_VEC const dyi = INV(dy); CCTK_REAL_VEC const dzi = INV(dz); CCTK_REAL_VEC const khalf = ToReal(0.5); CCTK_REAL_VEC const kthird = ToReal(1.0/3.0); CCTK_REAL_VEC const ktwothird = ToReal(2.0/3.0); CCTK_REAL_VEC const kfourthird = ToReal(4.0/3.0); CCTK_REAL_VEC const keightthird = ToReal(8.0/3.0); CCTK_REAL_VEC const hdxi = kmul(ToReal(0.5), dxi); CCTK_REAL_VEC const hdyi = kmul(ToReal(0.5), dyi); CCTK_REAL_VEC const hdzi = kmul(ToReal(0.5), dzi); /* Initialize predefined quantities */ CCTK_REAL_VEC const p1o12dx = kmul(INV(dx),ToReal(0.0833333333333333333333333333333)); CCTK_REAL_VEC const p1o12dy = kmul(INV(dy),ToReal(0.0833333333333333333333333333333)); CCTK_REAL_VEC const p1o12dz = kmul(INV(dz),ToReal(0.0833333333333333333333333333333)); CCTK_REAL_VEC const p1o144dxdy = kmul(INV(dx),kmul(INV(dy),ToReal(0.00694444444444444444444444444444))); CCTK_REAL_VEC const p1o144dxdz = kmul(INV(dx),kmul(INV(dz),ToReal(0.00694444444444444444444444444444))); CCTK_REAL_VEC const p1o144dydz = kmul(INV(dy),kmul(INV(dz),ToReal(0.00694444444444444444444444444444))); CCTK_REAL_VEC const p1o24dx = kmul(INV(dx),ToReal(0.0416666666666666666666666666667)); CCTK_REAL_VEC const p1o24dy = kmul(INV(dy),ToReal(0.0416666666666666666666666666667)); CCTK_REAL_VEC const p1o24dz = kmul(INV(dz),ToReal(0.0416666666666666666666666666667)); CCTK_REAL_VEC const p1o64dx = kmul(INV(dx),ToReal(0.015625)); CCTK_REAL_VEC const p1o64dy = kmul(INV(dy),ToReal(0.015625)); CCTK_REAL_VEC const p1o64dz = kmul(INV(dz),ToReal(0.015625)); CCTK_REAL_VEC const p1odx = INV(dx); CCTK_REAL_VEC const p1ody = INV(dy); CCTK_REAL_VEC const p1odz = INV(dz); CCTK_REAL_VEC const pm1o12dx2 = kmul(INV(SQR(dx)),ToReal(-0.0833333333333333333333333333333)); CCTK_REAL_VEC const pm1o12dy2 = kmul(INV(SQR(dy)),ToReal(-0.0833333333333333333333333333333)); CCTK_REAL_VEC const pm1o12dz2 = kmul(INV(SQR(dz)),ToReal(-0.0833333333333333333333333333333)); /* Loop over the grid points */ #pragma omp parallel LC_LOOP3VEC (ML_BSSN_convertToADMBaseFakeDtLapseShift, i,j,k, min[0],min[1],min[2], max[0],max[1],max[2], cctk_lsh[0],cctk_lsh[1],cctk_lsh[2], CCTK_REAL_VEC_SIZE) { ptrdiff_t const index = di*i + dj*j + dk*k; /* Assign local copies of grid functions */ CCTK_REAL_VEC AL = vec_load(A[index]); CCTK_REAL_VEC alphaL = vec_load(alpha[index]); CCTK_REAL_VEC B1L = vec_load(B1[index]); CCTK_REAL_VEC B2L = vec_load(B2[index]); CCTK_REAL_VEC B3L = vec_load(B3[index]); CCTK_REAL_VEC beta1L = vec_load(beta1[index]); CCTK_REAL_VEC beta2L = vec_load(beta2[index]); CCTK_REAL_VEC beta3L = vec_load(beta3[index]); CCTK_REAL_VEC rL = vec_load(r[index]); CCTK_REAL_VEC trKL = vec_load(trK[index]); CCTK_REAL_VEC Xt1L = vec_load(Xt1[index]); CCTK_REAL_VEC Xt2L = vec_load(Xt2[index]); CCTK_REAL_VEC Xt3L = vec_load(Xt3[index]); /* Include user supplied include files */ /* Precompute derivatives */ /* Calculate temporaries and grid functions */ CCTK_REAL_VEC eta = kfmin(ToReal(1),kmul(INV(rL),ToReal(SpatialBetaDriverRadius))); CCTK_REAL_VEC theta = kfmin(ToReal(1),kexp(knmsub(rL,INV(ToReal(SpatialShiftGammaCoeffRadius)),ToReal(1)))); CCTK_REAL_VEC dtalpL = kneg(kmul(kpow(alphaL,harmonicN),kmul(ToReal(harmonicF),kmadd(ksub(AL,trKL),ToReal(LapseACoeff),trKL)))); CCTK_REAL_VEC dtbetaxL = kmul(theta,kmul(kadd(Xt1L,kmadd(beta1L,kmul(eta,ToReal(BetaDriver*(-1 + ShiftBCoeff))),kmul(ksub(B1L,Xt1L),ToReal(ShiftBCoeff)))),ToReal(ShiftGammaCoeff))); CCTK_REAL_VEC dtbetayL = kmul(theta,kmul(kadd(Xt2L,kmadd(beta2L,kmul(eta,ToReal(BetaDriver*(-1 + ShiftBCoeff))),kmul(ksub(B2L,Xt2L),ToReal(ShiftBCoeff)))),ToReal(ShiftGammaCoeff))); CCTK_REAL_VEC dtbetazL = kmul(theta,kmul(kadd(Xt3L,kmadd(beta3L,kmul(eta,ToReal(BetaDriver*(-1 + ShiftBCoeff))),kmul(ksub(B3L,Xt3L),ToReal(ShiftBCoeff)))),ToReal(ShiftGammaCoeff))); /* If necessary, store only partial vectors after the first iteration */ if (CCTK_REAL_VEC_SIZE > 2 && CCTK_BUILTIN_EXPECT(i < lc_imin && i+CCTK_REAL_VEC_SIZE > lc_imax, 0)) { ptrdiff_t const elt_count_lo = lc_imin-i; ptrdiff_t const elt_count_hi = lc_imax-i; vec_store_nta_partial_mid(dtalp[index],dtalpL,elt_count_lo,elt_count_hi); vec_store_nta_partial_mid(dtbetax[index],dtbetaxL,elt_count_lo,elt_count_hi); vec_store_nta_partial_mid(dtbetay[index],dtbetayL,elt_count_lo,elt_count_hi); vec_store_nta_partial_mid(dtbetaz[index],dtbetazL,elt_count_lo,elt_count_hi); break; } /* If necessary, store only partial vectors after the first iteration */ if (CCTK_REAL_VEC_SIZE > 1 && CCTK_BUILTIN_EXPECT(i < lc_imin, 0)) { ptrdiff_t const elt_count = lc_imin-i; vec_store_nta_partial_hi(dtalp[index],dtalpL,elt_count); vec_store_nta_partial_hi(dtbetax[index],dtbetaxL,elt_count); vec_store_nta_partial_hi(dtbetay[index],dtbetayL,elt_count); vec_store_nta_partial_hi(dtbetaz[index],dtbetazL,elt_count); continue; } /* If necessary, store only partial vectors after the last iteration */ if (CCTK_REAL_VEC_SIZE > 1 && CCTK_BUILTIN_EXPECT(i+CCTK_REAL_VEC_SIZE > lc_imax, 0)) { ptrdiff_t const elt_count = lc_imax-i; vec_store_nta_partial_lo(dtalp[index],dtalpL,elt_count); vec_store_nta_partial_lo(dtbetax[index],dtbetaxL,elt_count); vec_store_nta_partial_lo(dtbetay[index],dtbetayL,elt_count); vec_store_nta_partial_lo(dtbetaz[index],dtbetazL,elt_count); break; } /* Copy local copies back to grid functions */ vec_store_nta(dtalp[index],dtalpL); vec_store_nta(dtbetax[index],dtbetaxL); vec_store_nta(dtbetay[index],dtbetayL); vec_store_nta(dtbetaz[index],dtbetazL); } LC_ENDLOOP3VEC (ML_BSSN_convertToADMBaseFakeDtLapseShift); } extern "C" void ML_BSSN_convertToADMBaseFakeDtLapseShift(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; GenericFD_LoopOverEverything(cctkGH, &ML_BSSN_convertToADMBaseFakeDtLapseShift_Body); }